Advertisement

© 2020

Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory

Proceedings, International Institute of Physics, Natal, Rn, Brazil, 2–21 August 2015

  • Alvaro Ferraz
  • Kumar S. Gupta
  • Gordon Walter Semenoff
  • Pasquale Sodano
Conference proceedings

Part of the Springer Proceedings in Physics book series (SPPHY, volume 239)

Table of contents

  1. Front Matter
    Pages i-xv
  2. Thors Hans Hansson, Thomas Klein Kvorning
    Pages 1-68
  3. Sougato Bose, Abolfazl Bayat, Henrik Johannesson, Pasquale Sodano
    Pages 91-107
  4. Fumihiko Sugino, Vladimir Korepin
    Pages 109-129
  5. Francesco Buccheri, Reinhold Egger
    Pages 131-153
  6. Johanna Erdmenger
    Pages 155-194
  7. João C. Pinto Barros, Michele Burrello, Andrea Trombettoni
    Pages 217-245
  8. David K. Campbell
    Pages 247-258
  9. Dmitry Melnikov
    Pages 271-288
  10. Mucio A. Continentino, Sabrina Rufo, Griffith M. Rufo
    Pages 289-307
  11. Rodrigo G. Pereira
    Pages 309-323
  12. Abolfazl Bayat, Gabriele De Chiara, Tony J. G. Apollaro, Simone Paganelli, Henrik Johannesson, Pasquale Sodano et al.
    Pages 361-373
  13. Javier Martinez Magan, Simone Paganelli
    Pages 375-393
  14. Giovanni Ramírez, Javier Rodríguez-Laguna, Germán Sierra
    Pages 395-405

About these proceedings

Introduction

This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the engineering of these states in quantum devices and novel materials useful for quantum information processing.

The book offers graduate students and young researchers in the field of modern condensed matter theory an updated review of the most relevant theoretical methods used in strongly coupled field theory and string theory. It also provides the tools for understanding their relevance in describing the emergence of new quantum states in a variety of physical settings.

Specifically, this proceedings book summarizes new and previously unrelated developments in modern condensed matter physics, in particular: the interface of condensed matter theory and quantum information theory; the interface of condensed matter physics and the mathematics emerging from the classification of the topological phases of matter, such as topological insulators and topological superconductors; and the simulation of condensed matter systems with cold atoms in optical lattices.

Keywords

Quantum Entanglement in Many Body Systems Quantum Impurities in Condensed Matter Systems Bulk and Boundary Quantum Critical Phenomena Quantum State Engineering in Atomic Physics and Quantum Optics Topological Phases of Matter Topological Quantum Computation

Editors and affiliations

  • Alvaro Ferraz
    • 1
  • Kumar S. Gupta
    • 2
  • Gordon Walter Semenoff
    • 3
  • Pasquale Sodano
    • 4
  1. 1.International Institute of Physics-UFRNNatal-RnBrazil
  2. 2.Theory DivisionSaha Institute of Nuclear PhysicsKolkataIndia
  3. 3.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  4. 4.International Institute of Physics-UFRNNatal-RnBrazil

About the editors

Alvaro Ferraz obtained his D.Phil. from the University of Oxford and became a Full Professor of Physics at the University of Brasília in 2003. In 2010, he moved to the Federal University of Rio Grande do Norte to direct the International Institute of Physics in Natal. His research focuses mainly on strongly interacting electronic systems. 

Kumar S. Gupta is a theoretical physicist working at Saha Institute of Nuclear Physics in Kolkata, India. He obtained his Ph.D. degree from Syracuse University, USA, and undertook postdoctoral research at the University of Rochester and at Iowa State University. His research interests include non-equilibrium dynamics, entanglement entropy, quantum aspects of black holes, and topological quantum field theories. 

Gordon Walter Semenoff holds a Ph.D. from the University of Alberta, was a Postdoctoral Fellow at the Massachusetts Institute of Technology, and has been a Professor of Physics at the University of British Columbia since 1990. He is a Fellow of the Royal Society of Canada and an Officer of the Order of Canada. He is known for his work on quantum field theory, string theory and theoretical elementary particle and condensed matter physics. 

Pasquale Sodano holds a Ph.D. from the University of Alberta (Canada) and a master’s degree from the University Federico II in Naples (Italy). He undertook postdoctoral research at the Massachusetts Institute of Technology (U.S.A.). He has been long-term Visiting Researcher at Los Alamos National Laboratories (U.S.A.), at Perimeter Institute (Canada), at the Max Planck Institute for Complex Systems (Germany), and at the International Institute of Physics in Natal (Brazil). He has been a Full Professor of Theoretical Physics at the University of Perugia in Italy since 1990. His more recent research interests are in the field of quantum field theory of condensed matter systems.


Bibliographic information