Advertisement

Stationary Diffraction by Wedges

Method of Automorphic Functions on Complex Characteristics

  • Alexander Komech
  • Anatoli Merzon
Book
  • 5.4k Downloads

Part of the Lecture Notes in Mathematics book series (LNM, volume 2249)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Alexander Komech, Anatoli Merzon
    Pages 1-11
  3. Survey of Diffraction Theory

    1. Front Matter
      Pages 13-13
    2. Alexander Komech, Anatoli Merzon
      Pages 15-17
    3. Alexander Komech, Anatoli Merzon
      Pages 19-35
    4. Alexander Komech, Anatoli Merzon
      Pages 37-41
    5. Alexander Komech, Anatoli Merzon
      Pages 43-61
    6. Alexander Komech, Anatoli Merzon
      Pages 63-68
  4. Method of Automorphic Functions on Complex Characteristics

    1. Front Matter
      Pages 69-69
    2. Alexander Komech, Anatoli Merzon
      Pages 71-75
    3. Alexander Komech, Anatoli Merzon
      Pages 77-83
    4. Alexander Komech, Anatoli Merzon
      Pages 85-87
    5. Alexander Komech, Anatoli Merzon
      Pages 89-91
    6. Alexander Komech, Anatoli Merzon
      Pages 93-95
    7. Alexander Komech, Anatoli Merzon
      Pages 97-98
    8. Alexander Komech, Anatoli Merzon
      Pages 99-100
    9. Alexander Komech, Anatoli Merzon
      Pages 101-103
    10. Alexander Komech, Anatoli Merzon
      Pages 105-109
    11. Alexander Komech, Anatoli Merzon
      Pages 111-115
    12. Alexander Komech, Anatoli Merzon
      Pages 117-123
    13. Alexander Komech, Anatoli Merzon
      Pages 125-127
    14. Alexander Komech, Anatoli Merzon
      Pages 129-137
    15. Alexander Komech, Anatoli Merzon
      Pages 139-148
    16. Alexander Komech, Anatoli Merzon
      Pages 149-149
  5. Back Matter
    Pages 151-167

About this book

Introduction

This book presents a new and original method for the solution of boundary value problems in angles for second-order elliptic equations with constant coefficients and arbitrary boundary operators. This method turns out to be applicable to many different areas of mathematical physics, in particular to diffraction problems in angles and to the study of trapped modes on a sloping beach.

Giving the reader the opportunity to master the techniques of the modern theory of diffraction, the book introduces methods of distributions, complex Fourier transforms, pseudo-differential operators, Riemann surfaces, automorphic functions, and the Riemann–Hilbert problem.

The book will be useful for students, postgraduates and specialists interested in the application of modern mathematics to wave propagation and diffraction problems.

Keywords

Automorphic Functions Boundary Value Problem Complex Fourier Transform Diffraction Distributions Elliptic Equation Factorization Fredholm Operators Helmholtz Equation Holomorphic Functions Paley-Wiener Theorem Pseudo-differential Operators Riemann Surface Riemann-Hilbert Problem Wedge

Authors and affiliations

  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria
  2. 2.Instituto de Fisica y MatematicasUniversidad Michoacana de San Nicolas de HidalgoMoreliaMexico

Bibliographic information