Advertisement

Complex Non-Kähler Geometry

Cetraro, Italy 2018

  • Sławomir Dinew
  • Sebastien Picard
  • Andrei Teleman
  • Alberto Verjovsky
  • Daniele Angella
  • Leandro Arosio
  • Eleonora Di Nezza
Book

Part of the Lecture Notes in Mathematics book series (LNM, volume 2246)

Also part of the C.I.M.E. Foundation Subseries book sub series (LNMCIME, volume 2246)

Table of contents

About this book

Introduction

Collecting together the lecture notes of the CIME Summer School held in Cetraro in July 2018, the aim of the book is to introduce a vast range of techniques which are useful in the investigation of complex manifolds.  The school consisted of four courses, focusing on both the construction of non-Kähler manifolds and the understanding of a possible classification of complex non-Kähler manifolds. In particular, the courses by Alberto Verjovsky and Andrei Teleman introduced tools in the theory of foliations and analytic techniques for the classification of compact complex surfaces and compact Kähler manifolds, respectively. The courses by Sebastien Picard and Sławomir Dinew focused on analytic techniques in Hermitian geometry, more precisely, on special Hermitian metrics and geometric flows, and on pluripotential theory in complex non-Kähler geometry.

Keywords

Anomaly Flow LVMB Manifold Non-Kähler Complex Manifold Non-Kählerian Compact Complex Surface Pluripotential Theory

Authors and affiliations

  • Sławomir Dinew
    • 1
  • Sebastien Picard
    • 2
  • Andrei Teleman
    • 3
  • Alberto Verjovsky
    • 4
  1. 1.Department of Mathematics and Computer ScienceJagiellonian UniversityKrakowPoland
  2. 2.Harvard UniversityCambridgeUSA
  3. 3.Aix-Marseille Université, CNRSMarseilleFrance
  4. 4.Instituto de Matematicas, Unidad CuernavacaUniversidad Nacional AutónomaMexicoMexico

Editors and affiliations

  1. 1.Dipartimento di Matematica e Informatica “Ulisse Dini”Università di FirenzeFirenzeItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma Tor VergataRomaItaly
  3. 3.Sorbonne UniversitéParisFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-030-25883-2
  • Copyright Information Springer Nature Switzerland AG 2019
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-030-25882-5
  • Online ISBN 978-3-030-25883-2
  • Series Print ISSN 0075-8434
  • Series Online ISSN 1617-9692
  • Buy this book on publisher's site