Advanced Finite Element Methods with Applications

Selected Papers from the 30th Chemnitz Finite Element Symposium 2017

  • Thomas Apel
  • Ulrich Langer
  • Arnd Meyer
  • Olaf Steinbach
Book FEM 2017

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 128)

Table of contents

  1. Front Matter
    Pages i-xxii
  2. Thomas Apel, Mariano Mateos, Johannes Pfefferer, Arnd Rösch
    Pages 1-16
  3. Lothar Banz, Jan Petsche, Andreas Schröder
    Pages 41-55
  4. Marius Paul Bruchhäuser, Kristina Schwegler, Markus Bause
    Pages 85-106
  5. Stanislav Harizanov, Raytcho Lazarov, Svetozar Margenov, Pencho Marinov, Joseph Pasciak
    Pages 165-185
  6. Alexander Heinlein, Axel Klawonn, Oliver Rheinbach, Friederike Röver
    Pages 187-204
  7. Christoph Hofer, Stefan Takacs
    Pages 205-219
  8. Ulrich Langer, Martin Neumüller, Andreas Schafelner
    Pages 247-275
  9. Sergej Rjasanow, Steffen Weißer
    Pages 277-295
  10. Felix Scholz, Angelos Mantzaflaris, Bert Jüttler
    Pages 297-321
  11. Back Matter
    Pages 415-428

About this book


Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.


Finite element methods Isogeometric analysis Adaptivity Parallel implementation Fast solvers Fractional derivatives Computational mechanics

Editors and affiliations

  • Thomas Apel
    • 1
  • Ulrich Langer
    • 2
  • Arnd Meyer
    • 3
  • Olaf Steinbach
    • 4
  1. 1.Institut für Mathematik & Computergestützte SimulationUniversität der Bundeswehr MünchenNeubibergGermany
  2. 2.Institute for Computational MathematicsJohannes Kepler University LinzLinzAustria
  3. 3.Fakultät für MathematikTU ChemnitzChemnitzGermany
  4. 4.Institut für Angewandte MathematikTechnische Universität GrazGrazAustria

Bibliographic information