Advertisement

Mathematical Models of Higher Orders

Shells in Temperature Fields

  • Vadim A. Krysko
  • Jan Awrejcewicz
  • Maxim V. Zhigalov
  • Valeriy F. Kirichenko
  • Anton V. Krysko
Book

Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 42)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Vadim A. Krysko, Jan Awrejcewicz, Maxim V. Zhigalov, Valeriy F. Kirichenko, Anton V. Krysko
    Pages 1-19
  3. Vadim A. Krysko, Jan Awrejcewicz, Maxim V. Zhigalov, Valeriy F. Kirichenko, Anton V. Krysko
    Pages 21-131
  4. Vadim A. Krysko, Jan Awrejcewicz, Maxim V. Zhigalov, Valeriy F. Kirichenko, Anton V. Krysko
    Pages 133-247
  5. Vadim A. Krysko, Jan Awrejcewicz, Maxim V. Zhigalov, Valeriy F. Kirichenko, Anton V. Krysko
    Pages 249-305
  6. Vadim A. Krysko, Jan Awrejcewicz, Maxim V. Zhigalov, Valeriy F. Kirichenko, Anton V. Krysko
    Pages 307-330
  7. Vadim A. Krysko, Jan Awrejcewicz, Maxim V. Zhigalov, Valeriy F. Kirichenko, Anton V. Krysko
    Pages 331-421
  8. Vadim A. Krysko, Jan Awrejcewicz, Maxim V. Zhigalov, Valeriy F. Kirichenko, Anton V. Krysko
    Pages 423-462
  9. Back Matter
    Pages 463-470

About this book

Introduction

This book offers a valuable methodological approach to the state-of-the-art of the classical plate/shell mathematical models, exemplifying the vast range of mathematical models of nonlinear dynamics and statics of continuous mechanical structural members. The main objective highlights the need for further study of the classical problem of shell dynamics consisting of mathematical modeling, derivation of nonlinear PDEs, and of finding their solutions based on the development of new and effective numerical techniques. The book is designed for a broad readership of graduate students in mechanical and civil engineering, applied mathematics, and physics, as well as to researchers and professionals interested in a rigorous and comprehensive study of modeling non-linear phenomena governed by PDEs.

Keywords

Kirchhoff-Love model Faedo-Galerkin method thermoelastic shells evolutionary equations theory of design Timoshenko hypothesis Sheremetev-Pelekh-Reddy-Levinson third approximation model Grigolyuk-Kulikov model chaotic vibrations

Authors and affiliations

  • Vadim A. Krysko
    • 1
  • Jan Awrejcewicz
    • 2
  • Maxim V. Zhigalov
    • 3
  • Valeriy F. Kirichenko
    • 4
  • Anton V. Krysko
    • 5
  1. 1.Department of Mathematics and ModelingSaratov State Technical UniversitySaratovRussia
  2. 2.Department of Automation, Biomechanics and MechatronicsLodz University of TechnologyLodzPoland
  3. 3.Department of Mathematics and ModelingSaratov State Technical UniversitySaratovRussia
  4. 4.Department of Mathematics and ModelingSaratov State Technical UniversitySaratovRussia
  5. 5.Department of Applied Mathematics and Systems AnalysisSaratov State Technical UniversitySaratovRussia

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-030-04714-6
  • Copyright Information Springer Nature Switzerland AG 2019
  • Publisher Name Springer, Cham
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-3-030-04713-9
  • Online ISBN 978-3-030-04714-6
  • Series Print ISSN 1571-8689
  • Series Online ISSN 1876-9896
  • Buy this book on publisher's site