Advertisement

Machine Learning Risk Assessments in Criminal Justice Settings

  • Richard Berk

Table of contents

  1. Front Matter
    Pages i-ix
  2. Richard Berk
    Pages 1-13
  3. Richard Berk
    Pages 15-40
  4. Richard Berk
    Pages 75-114
  5. Richard Berk
    Pages 115-130
  6. Richard Berk
    Pages 131-154
  7. Richard Berk
    Pages 155-161
  8. Back Matter
    Pages 173-178

About this book

Introduction

This book puts in one place and in accessible form Richard Berk’s most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk.

 Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than “predictive policing” for locations in time and space, which is a very different enterprise that uses different data different data analysis tools.

 The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.

Keywords

Risk Assessment machine learning risk forecasting criminal justice future dangerousness fair algorithms random forests gradient boosting neural networks deep learning

Authors and affiliations

  • Richard Berk
    • 1
  1. 1.Department of CriminologyUniversity of PennsylvaniaPhiladelphiaUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-3-030-02272-3
  • Copyright Information Springer Nature Switzerland AG 2019
  • Publisher Name Springer, Cham
  • eBook Packages Computer Science
  • Print ISBN 978-3-030-02271-6
  • Online ISBN 978-3-030-02272-3
  • Buy this book on publisher's site