Metric Spaces

  • Mícheál Ó Searcóid
Part of the Springer Undergraduate Mathematics Series book series (SUMS)

Table of contents

  1. Front Matter
    Pages i-xix
  2. Pages 1-20
  3. Pages 21-34
  4. Pages 35-51
  5. Pages 71-82
  6. Pages 83-102
  7. Pages 103-124
  8. Pages 125-146
  9. Pages 147-163
  10. Pages 165-190
  11. Pages 191-204
  12. Pages 205-226
  13. Pages 227-244
  14. Back Matter
    Pages 245-304

About this book

Introduction

The abstract concepts of metric ces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.

The book goes on to provide a thorough exposition of all the standard necessary results of the theory and, in addition, includes selected topics not normally found in introductory books, such as: the Tietze Extension Theorem; the Hausdorff metric and its completeness; and the existence of curves of minimum length. Other features include:

  • end-of-chapter summaries and numerous exercises to reinforce what has been learnt;
  • extensive cross-referencing to help the reader follow arguments;
  • a Cumulative Reference Chart, showing the dependencies throughout the book on a section-by-section basis as an aid to course design.

The book is designed for third- and fourth-year undergraduates and beginning graduates. Readers should have some practical knowledge of differential and integral calculus and have completed a first course in real analysis. With its many examples, careful illustrations, and full solutions to selected exercises, this book provides a gentle introduction that is ideal for self-study and an excellent preparation for applications.

Keywords

Continuity Convergence Distance Metric space theory Metric spaces Open sets calculus compactness minimum

Authors and affiliations

  • Mícheál Ó Searcóid
    • 1
  1. 1.UCD School of Mathematical SciencesUniversity College DublinBelfield Dublin 4Ireland

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-84628-627-8
  • Copyright Information Springer-Verlag London Limited 2007
  • Publisher Name Springer, London
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-1-84628-369-7
  • Online ISBN 978-1-84628-627-8
  • Series Print ISSN 1615-2085
  • About this book