Numerical Partial Differential Equations: Finite Difference Methods

  • J. W. Thomas

Part of the Texts in Applied Mathematics book series (TAM, volume 22)

Table of contents

  1. Front Matter
    Pages i-xx
  2. J. W. Thomas
    Pages 1-4
  3. J. W. Thomas
    Pages 5-39
  4. J. W. Thomas
    Pages 41-95
  5. J. W. Thomas
    Pages 97-145
  6. J. W. Thomas
    Pages 147-203
  7. J. W. Thomas
    Pages 205-259
  8. J. W. Thomas
    Pages 261-360
  9. J. W. Thomas
    Pages 361-426
  10. Back Matter
    Pages 427-437

About this book


This text will be divided into two books which cover the topic of numerical partial differential equations. Of the many different approaches to solving partial differential equations numerically, this book studies difference methods. Written for the beginning graduate student, this text offers a means of coming out of a course with a large number of methods which provide both theoretical knowledge and numerical experience. The reader will learn that numerical experimentation is a part of the subject of numerical solution of partial differential equations, and will be shown some uses and taught some techniques of numerical experimentation.


YellowSale2006 adopted-textbook differential equation hyperbolic equation partial differential equation stability

Authors and affiliations

  • J. W. Thomas
    • 1
  1. 1.Department of MathematicsColorado State UniversityFort CollinsUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag New York 1995
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4419-3105-4
  • Online ISBN 978-1-4899-7278-1
  • Series Print ISSN 0939-2475
  • Series Online ISSN 2196-9949
  • Buy this book on publisher's site