Advertisement

Percolation Theory for Mathematicians

  • Harry Kesten

Part of the Progress in Probability and Statistics book series (PRPR, volume 2)

Table of contents

  1. Front Matter
    Pages i-viii
  2. Harry Kesten
    Pages 1-9
  3. Harry Kesten
    Pages 10-39
  4. Harry Kesten
    Pages 40-68
  5. Harry Kesten
    Pages 69-80
  6. Harry Kesten
    Pages 81-125
  7. Harry Kesten
    Pages 126-167
  8. Harry Kesten
    Pages 168-197
  9. Harry Kesten
    Pages 198-237
  10. Harry Kesten
    Pages 238-254
  11. Harry Kesten
    Pages 255-334
  12. Harry Kesten
    Pages 335-379
  13. Harry Kesten
    Pages 380-385
  14. Back Matter
    Pages 386-423

About this book

Introduction

Quite apart from the fact that percolation theory had its orlgln in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods. At the same time many of the problems are of interest to or proposed by statistical physicists and not dreamt up merely to demons~te ingenuity. Progress in the field has been slow. Relatively few results have been established rigorously, despite the rapidly growing literature with variations and extensions of the basic model, conjectures, plausibility arguments and results of simulations. It is my aim to treat here some basic results with rigorous proofs. This is in the first place a research monograph, but there are few prerequisites; one term of any standard graduate course in probability should be more than enough. Much of the material is quite recent or new, and many of the proofs are still clumsy. Especially the attempt to give proofs valid for as many graphs as possible led to more complications than expected. I hope that the Applications and Examples provide justifi­ cation for going to this level of generality.

Keywords

Simula Statistica Variation field graphs minimum model probability proof simulation time

Authors and affiliations

  • Harry Kesten
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Bibliographic information