Local Density Approximations in Quantum Chemistry and Solid State Physics

  • Jens Peder Dahl
  • John Avery

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Fundamental Theory

    1. Front Matter
      Pages xv-xv
    2. Robert G. Parr
      Pages 21-31
    3. Scott H. Werden, Ernest R. Davidson
      Pages 33-42
    4. Philip Phillips, Ernest R. Davidson
      Pages 43-52
    5. R. F. W. Bader, Hanno Essén
      Pages 129-144
    6. John P. Perdew
      Pages 173-205
    7. Eugene S. Kryachko
      Pages 207-228
    8. A. Savin, H. Stoll, H. Preuss
      Pages 263-272
    9. William L. Luken, John C. Culberson
      Pages 303-321
    10. E. K. U. Gross, R. M. Dreizler
      Pages 353-379
    11. Michael Springborg, Jens Peder Dahl
      Pages 381-412
  3. Applications

    1. Front Matter
      Pages 413-413
    2. E. J. Baerends, J. G. Snijders, C. A. de Lange, G. Jonkers
      Pages 415-485
    3. J. Harris, J. E. Müller
      Pages 531-558
    4. E. Wimmer, A. J. Freeman, M. Weinert
      Pages 593-603
    5. Karlheinz Schwarz, Peter Blaha
      Pages 605-616
    6. H. Chermette, A. Goursot
      Pages 635-642
    7. Cary Y. Yang, David A. Case
      Pages 643-664
    8. N. A. W. Holzwarth, Steven G. Louie, Sohrab Rabii
      Pages 665-672
    9. J. R. Schneider, G. E. W. Bauer, N. K. Hansen, H. Kretschmer
      Pages 679-712
    10. Kaarle Kurki-Suonio, Riitta Sälke
      Pages 713-732
    11. John Avery, Peter Sommer Larsen, Michael Grodzicki
      Pages 733-750
    12. Koichi Ohno, Yoshiya Harada
      Pages 761-770
    13. S. Manoli, M. A. Whitehead
      Pages 795-803
  4. Back Matter
    Pages 833-851

About this book


The· simplest picture of an atom, a molecule or a solid is the picture of its distribution of charge. It is obtained by specifying the positions of the atomic nuclei and by showing how the density, p(E), of the electronic charge-cloud varies from place to place. A much more detailed picture is provided by the many-electron wavefunction. This quantity shows not only the arrangement of the electrons with respect to the nuclei, but also the arrangement of the electrons with respect to each other, and it allows the evaluation of the total energy and other properties. The many-electron wavefunction is in principle obtained by solving the many-electron Schrodinger equation for the motion of the interacting electrons under the influ­ ence of the nuclei, but in practice the equation is unsolvable, and it is necessary to proceed by methods of approximation. Needless to say, .such methods will as a rule depend on the complexity of the system considered.


Energie chemistry distribution electrons spectroscopy spin

Editors and affiliations

  • Jens Peder Dahl
    • 1
  • John Avery
    • 2
  1. 1.Technical University of DenmarkLyngbyDenmark
  2. 2.University of CopenhagenCopenhagenDenmark

Bibliographic information