Fluorescence Microscopy and Fluorescent Probes

  • Jan Slavík

Table of contents

  1. Front Matter
    Pages i-xviii
  2. Fluorescence Microscopy and Fluorescent Probes

    1. Hans C. Gerritsen
      Pages 35-46
    2. Jan Slavík
      Pages 57-60
    3. José-Enrique O’Connor
      Pages 61-66
    4. Herbert Schneckenburger, Michael H. Gschwend, Karsten König, Reinhard Sailer, Wolfgang S. L. Strauß
      Pages 71-78
    5. I. V. Eigenbrot, B. Crystall, D. Phillips
      Pages 79-83
  3. Ion-Sensitive Fluorescent Probes

  4. Membrane Potential-Sensitive Fluorescent Probes

    1. B. Denksteinová, D. Gášková, P. Heřman, J. Večeř, K. Sigler, J. Plášek et al.
      Pages 151-155
    2. Valášek L., Vondrejs V., Bartúněk M., Janderová B.
      Pages 163-167
  5. Fluorescent Probes for Nucleic Acids

    1. Bernd Rinke, Joachim Bradl, Bernhard Schneider, Markus Durm, Michael Hausmann, Horst Ludwig et al.
      Pages 169-173
    2. Kyra Michalová, Zuzana Zemanová, Jana Březinová, Věra Michalová
      Pages 185-189
    3. Lars Guldfeldt, Henrik Siegumfeldt, Lotte Lammert, Mogens Jakobsen
      Pages 191-195
    4. Mehdi Benchaib, Richard Delorme, Paul-André Bryon, Catherine Souchier
      Pages 197-201
  6. Fluorescent Labels, Fluorescent and Fluorogenic Substrates

    1. Georges A. Wagnières, Seiichi Iinuma, Kevin T. Schomacker, Tom Deutsch, Tayyaba Hasan
      Pages 203-209
    2. Odd Terje Brustugun, Gunnar Mellgren, Bjørn Tore Gjertsen, Rolf Bjerkvig, Stein Ove Døskeland
      Pages 211-215
    3. Jacek Wierzchowski, Piotr Wroczynski, Elzbieta Interewicz, Izabela Orlanska, Jacek Przybylski
      Pages 217-221
    4. Margaret E. Langmuir, Jun-Rui Yang, Karen A. LeCompte, Ralph E. Durand
      Pages 229-233
    5. Jürgen Metz, Peter Pavlov, Ralf Kinscherf, Christoph Köhler, Claus Usinger
      Pages 235-239
    6. László Homolya, Marianna Müller, Zsolt Holló, Balázs Sarkadi
      Pages 241-245
    7. Koskinen M., Parkkonen T., Autio K.
      Pages 253-255
    8. Vera Maravić-Stojković, Vladimir Baltić
      Pages 257-259
  7. Digital Image Analysis

    1. Hanna Tinel, Frank Wehner, Rolf K. H. Kinne
      Pages 273-277
    2. Denis Demandolx, Jean Davoust
      Pages 279-283
    3. Lucie Kubínová, Marie Jirkovská, Petr Hach, Daniel Palouš, Petr Karen, Ivan Krekule
      Pages 285-289
    4. Werner J. H. Koopman, Bruce G. Jenks, Eric W. Roubos, Wim J. J. M. Scheenen
      Pages 291-295
  8. Back Matter
    Pages 303-306

About this book


Fluorescence microscopy images can be easily integrated into current video and computer image processing systems. People like visual observation; they like to watch a television or computer screen, and fluorescence techniques are thus becoming more and more popular. Since true in vivo experiments are simple to perform, samples can be directly seen and there is always the possibility of manipulating the samples during the experiments; it is an ideal technique for biology and medicine. Images are obtained by a classical (now called wide-field) fluorescence microscope, a confocal scanning microscope, upright or inverted, with epifluorescence or transmission. Computerized image processing may improve definition, and remove glare and scattered light signal. It also makes it possible to compute ratio images (ratio imaging both in excitation and in emission) or lifetime imaging. Image analysis programs may supply a great deal of additional data of various types, starting with calculations of the number of fluorescent objects, their shapes, brightness, etc. Fluorescence microscopy data may be complemented by classical measurement in the cuvette yr by flow cytometry.


enzymes fluorescence image analysis imaging microscopy tissue

Editors and affiliations

  • Jan Slavík
    • 1
  1. 1.Institute of PhysiologyCzech Academy of SciencesPragueCzech Republic

Bibliographic information