Technologies for Detection of DNA Damage and Mutations

  • Gerd P. Pfeifer

Table of contents

  1. Front Matter
    Pages i-xxv
  2. Technologies for Detection of DNA Damage

    1. Front Matter
      Pages 1-1
    2. Michael F. Fenech
      Pages 25-36
    3. Régen Drouin, Shuwei Gao, Gerald P. Holmquist
      Pages 37-43
    4. Michael Weinfeld, Michel Liuzzi, George D. D. Jones
      Pages 63-71
    5. Jürgen Thomale, Jörg Engelbergs, Frank Seiler, Manfred F. Rajewsky
      Pages 87-101
    6. Robert J. Melamede, Yoke Wah Kow, Ivan A. Bespalov, Susan S. Wallace
      Pages 103-115
    7. Charles A. Smith, Philip C. Hanawalt
      Pages 117-129
    8. Vilhelm A. Bohr
      Pages 131-138
    9. Timothy R. O’Connor
      Pages 155-170
    10. F. Michael Yakes, Yiming Chen, Bennett Van Houten
      Pages 171-184
    11. Gopaul Kotturi, Wolfgang C. Kusser, Barry W. Glickman
      Pages 185-197
    12. Silvia Tornaletti, Gerd P. Pfeifer
      Pages 199-209
    13. Régen Drouin, Henry Rodriguez, Gerald P. Holmquist, Steven A. Akman
      Pages 211-225
    14. Keith A. Grimaldi, Simon R. McAdam, John A. Hartley
      Pages 227-238
  3. Technologies for Detection of Mutations

    1. Front Matter
      Pages 239-239
    2. Damjan Glavač, Michael Dean
      Pages 241-251
    3. Riccardo Fodde, Monique Losekoot
      Pages 253-265
    4. Daizong Li, Nathalie van Orsouw, Chris Huang, Jan Vijg
      Pages 291-305
    5. R. Bruce Wallace, Ching-I P. Lin, Antonio A. Reyes, Jimmie D. Lowery, Luis Ugozzoli
      Pages 307-322
    6. Johan T. Den Dunnen, Pauline A. M. Roest, Rob B. Van Der Luijt, Frans B. L. Hogervorst
      Pages 323-341
    7. Piroska E. Szabó, Gerd P. Pfeifer, Jeffrey R. Mann, Judith Singer-Sam
      Pages 343-349
    8. Piroska E. Szabó, Jeffrey R. Mann, Gerald Forrest
      Pages 351-370
  4. Mammalian Systems for Mutation Analysis

    1. Front Matter
      Pages 371-371
    2. Veronica M. Maher, J. Justin McCormick
      Pages 381-390
    3. Johan G. de Boer, Heather L. Erfle, David Walsh, James Holcroft, Barry W. Glickman
      Pages 411-429
    4. Fernando Aguilar, Peter Cerutti
      Pages 431-438
  5. Back Matter
    Pages 439-441

About this book


Man-made carcinogens, natural genotoxic agents in the environment, as well as ionizing and ultraviolet radiation can damage DNA and are a constant threat to genome integrity. Throughout the evolution oflife, complex DNA repair systems have developed in all living organisms to cope with this damage. Unrepaired DNA lesions can promote genetic alterations (mutations) that may be linked to an altered phenotype, and, if growth-controlling genes are involved, these mutations can lead to cell transformation and the development of malignant tumors. Proto­ oncogenes and tumor suppressor genes may be critical targets for DNA damaging agents. In a number of animal model systems, correlations between exposure to a carcinogen, tumor develop­ ment, and genetic changes in tumor DNA have been established. To understand mutagenesis processes in more detail at the molecular level, we need to know the type and frequency of DNA adducts within cells, their distribution along genes and specific DNA sequences, as well as the rates at which they are repaired. We also need to know what types of mutations are produced and which gene positions are most prone to mutagenesis. This book provides a collection of techniques that are useful in mutagenesis research. The book is divided into three parts. In Part I, methods for DNA damage and repair analysis are provided.


DNA Mammalia PCR Polymerasekettenreaktion cell biology genes genetics molecular biology mutagenesis polymer reaction transgen

Editors and affiliations

  • Gerd P. Pfeifer
    • 1
  1. 1.Department of BiologyBeckman Research Institute of the City of HopeDuarteUSA

Bibliographic information