Skip to main content
Book cover

Atoms in Strong Fields

  • Book
  • © 1990

Overview

Part of the book series: NATO Science Series B: (NSSB, volume 212)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (31 chapters)

  1. Nonperturbative Theory

  2. Multiply Excited States

  3. Molecules in Intense Lasers Fields

Keywords

About this book

This book collects the lectures given at the NATO Advanced Study Institute on "Atoms in Strong Fields", which took place on the island of Kos, Greece, during the two weeks of October 9-21,1988. The designation "strong field" applies here to an external electromagnetic field that is sufficiently strong to cause highly nonlinear alterations in atomic or molecular struc­ ture and dynamics. The specific topics treated in this volume fall into two general cater­ gories, which are those for which strong field effects can be studied in detail in terrestrial laboratories: the dynamics of excited states in static or quasi-static electric and magnetic fields; and the interaction of atoms and molecules with intense laser radiation. In both areas there exist promising opportunities for research of a fundamental nature. An electric field of even a few volts per centimeter can be very strong on the atom­ ic scale, if it acts upon a weakly bound state. The study of Rydberg states with high reso­ lution laser spectroscopic techniques has made it possible to follow the transition from weak-field to strong-field behavior in remarkable detail, using static fields of modest lab­ oratory strength; in the course of this transition the atomic system evolves from one which can be thoroughly understood in terms of field-free quantum numbers, to one which cannot be meaningfully associated at all with the zero-field states of the atom.

Editors and Affiliations

  • Theoretical and Physical Chemistry Institute, Hellenic Research Foundation, Athens, Greece

    Cleanthes A. Nicolaides

  • National Institute of Standards and Technology, Gaithersburg, USA

    Charles W. Clark

  • University of Illinois at Urbana-Champaign, Urbana, USA

    Munir H. Nayfeh

Bibliographic Information

Publish with us