Book Volume 84 1990

A Classical Introduction to Modern Number Theory

Authors:

ISBN: 978-1-4419-3094-1 (Print) 978-1-4757-2103-4 (Online)

Table of contents (20 chapters)

  1. Front Matter

    Pages i-xiv

  2. No Access

    Chapter

    Pages 1-16

    Unique Factorization

  3. No Access

    Chapter

    Pages 17-27

    Applications of Unique Factorization

  4. No Access

    Chapter

    Pages 28-38

    Congruence

  5. No Access

    Chapter

    Pages 39-49

    The Structure of U(ℤ/nℤ)

  6. No Access

    Chapter

    Pages 50-65

    Quadratic Reciprocity

  7. No Access

    Chapter

    Pages 66-78

    Quadratic Gauss Sums

  8. No Access

    Chapter

    Pages 79-87

    Finite Fields

  9. No Access

    Chapter

    Pages 88-107

    Gauss and Jacobi Sums

  10. No Access

    Chapter

    Pages 108-137

    Cubic and Biquadratic Reciprocity

  11. No Access

    Chapter

    Pages 138-150

    Equations over Finite Fields

  12. No Access

    Chapter

    Pages 151-171

    The Zeta Function

  13. No Access

    Chapter

    Pages 172-187

    Algebraic Number Theory

  14. No Access

    Chapter

    Pages 188-202

    Quadratic and Cyclotomic Fields

  15. No Access

    Chapter

    Pages 203-227

    The Stickelberger Relation and the Eisenstein Reciprocity Law

  16. No Access

    Chapter

    Pages 228-248

    Bernoulli Numbers

  17. No Access

    Chapter

    Pages 249-268

    Dirichlet L-functions

  18. No Access

    Chapter

    Pages 269-296

    Diophantine Equations

  19. No Access

    Chapter

    Pages 297-318

    Elliptic Curves

  20. No Access

    Chapter

    Pages 319-338

    The Mordell-Weil Theorem

  21. No Access

    Chapter

    Pages 339-365

    New Progress in Arithmetic Geometry

  22. Back Matter

    Pages 367-394