Manifolds of Nonpositive Curvature

  • Werner Ballmann
  • Mikhael Gromov
  • Viktor Schroeder
Part of the Progress in Mathematics book series (PM, volume 61)

Table of contents

  1. Front Matter
    Pages N1-iv
  2. Lectures on Manifolds of Nonpositive Curvature

    1. Front Matter
      Pages v-v
    2. Simply Connected Manifolds of Nonpositive Curvature

      1. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 1-14
      2. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 15-20
      3. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 21-32
      4. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 33-59
      5. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 60-76
    3. Groups of Isometries

      1. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 77-85
      2. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 86-98
      3. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 99-102
      4. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 103-109
    4. Finiteness Theorems

      1. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 110-119
      2. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 120-124
      3. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 125-137
      4. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 138-152
    5. Strong Rigidity of Locally Symmetric Spaces

      1. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 153-156
      2. Werner Ballmann, Mikhael Gromov, Viktor Schroeder
        Pages 157-176
  3. Back Matter
    Pages 177-266

About this book

Introduction

This volume presents a complete and self-contained description of new results in the theory of manifolds of nonpositive curvature. It is based on lectures delivered by M. Gromov at the Collège de France in Paris. Among others these lectures threat local and global rigidity problems (e.g., a generalization of the famous Mostow rigidity theorem) and finiteness results for manifolds of finite volume. V. Schroeder wrote up these lectures, including complete and detailed proofs. A lot of background material is added to the first lectures. Therefore this book may also serve as an introduction to the subject of nonpositively curved manifolds. The latest progress in this area is reflected in the article of W. Ballmann describing the structure of manifolds of higher rank.

Keywords

Isometrie cls curvature manifold metric space

Authors and affiliations

  • Werner Ballmann
    • 1
    • 2
  • Mikhael Gromov
    • 3
  • Viktor Schroeder
    • 4
    • 5
  1. 1.Dept. of MathematicsUniversity of MarylandCollege ParkUSA
  2. 2.Math. Institut der UniversitätBonnWest Germany
  3. 3.Inst. des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  4. 4.Math. Institut der UniversitätMünsterGermany
  5. 5.Math. Institut der UniversitätBaselSwitzerland

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4684-9159-3
  • Copyright Information Springer Science+Business Media New York 1985
  • Publisher Name Birkhäuser, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4684-9161-6
  • Online ISBN 978-1-4684-9159-3
  • Series Print ISSN 0743-1643
  • Series Online ISSN 2296-505X
  • About this book