## About this book

### Introduction

Most of the topics in applied mathematics dealt with in this handbook can be grouped rather loosely under the term analysis. They involve results and techniques which experience has shown to be of utility in a very broad variety of applications. Although care has been taken to collect certain basic results in convenient form, it is not the purpose of this handbook to duplicate the excellent collections of tables and formulas available in the National Bureau of Standards Handbook of Mathematical Functions (AMS Series 55, U.S. Government Printing Office) and in the references given therein. Rather, the emphasis in the present handbook is on technique, and we are indeed fortunate that a number of eminent applied mathe maticians have been willing to share with us their interpretations and experiences. To avoid the necessity of frequent and disruptive cross-referencing, it is expected that the reader will make full use of the index. Moreover, each chapter has been made as self-sufficient as is feasible. This procedure has resulted in occasional duplication, but as compensation for this the reader may appreciate the availability of different points of view concerning certain topics of current interest. As editor, I would like to express my appreciation to the contributing authors, to the reviewers, to the editorial staff of the publisher, and to the many secretaries and typists who have worked on the manuscript; without the partnership of all of these people, this handbook would not have been possible.

### Keywords

Mathematica applied mathematics calculus eigenvalue problem function linear algebra linear optimization mathematical modeling mathematics mechanics modeling numerical analysis optimization statistics variable

### Editors and affiliations

- 1.University of WashingtonUSA

### Bibliographic information