Advertisement

An Asymptotic Theory for Empirical Reliability and Concentration Processes

  • Miklós Csörgő
  • Sándor Csörgő
  • Lajos Horváth

Part of the Lecture Notes in Statistics book series (LNS, volume 33)

Table of contents

  1. Front Matter
    Pages i-v
  2. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 1-20
  3. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 21-33
  4. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 34-38
  5. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 39-43
  6. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 44-48
  7. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 49-60
  8. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 61-62
  9. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 63-71
  10. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 72-80
  11. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 81-94
  12. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 95-96
  13. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 97-99
  14. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 100-129
  15. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 130-134
  16. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 135-142
  17. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 143-149
  18. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 150-164
  19. Miklós Csörgő, Sándor Csörgő, Lajos Horváth
    Pages 165-171
  20. Back Matter
    Pages 172-172

About this book

Introduction

Mik16s Cs6rgO and David M. Mason initiated their collaboration on the topics of this book while attending the CBMS-NSF Regional Confer­ ence at Texas A & M University in 1981. Independently of them, Sandor Cs6rgO and Lajos Horv~th have begun their work on this subject at Szeged University. The idea of writing a monograph together was born when the four of us met in the Conference on Limit Theorems in Probability and Statistics, Veszpr~m 1982. This collaboration resulted in No. 2 of Technical Report Series of the Laboratory for Research in Statistics and Probability of Carleton University and University of Ottawa, 1983. Afterwards David M. Mason has decided to withdraw from this project. The authors wish to thank him for his contributions. In particular, he has called our attention to the reverse martingale property of the empirical process together with the associated Birnbaum-Marshall inequality (cf.,the proofs of Lemmas 2.4 and 3.2) and to the Hardy inequality (cf. the proof of part (iv) of Theorem 4.1). These and several other related remarks helped us push down the 2 moment condition to EX < 00 in all our weak approximation theorems.

Keywords

Bootstrapping Variance probability statistics

Authors and affiliations

  • Miklós Csörgő
    • 1
  • Sándor Csörgő
    • 2
  • Lajos Horváth
    • 2
  1. 1.Department of Mathematics and StatisticsCarleton UniversityOttawaCanada
  2. 2.Bolyai InstituteSzeged UniversitySzegedHungary

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4615-6420-1
  • Copyright Information Springer-Verlag New York 1986
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-387-96359-4
  • Online ISBN 978-1-4615-6420-1
  • Series Print ISSN 0930-0325
  • Buy this book on publisher's site