Advertisement

Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics

  • Vladimir F. Dem’yanov
  • Georgios E. Stavroulakis
  • Ludmila N. Polyakova
  • Panagiotis D. Panagiotopoulos

Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 10)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 1-48
  3. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 49-91
  4. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 93-137
  5. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 139-176
  6. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 177-203
  7. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 205-252
  8. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 253-295
  9. Vladimir F. Dem’yanov, Georgios E. Stavroulakis, Ludmila N. Polyakova, Panagiotis D. Panagiotopoulos
    Pages 297-344
  10. Back Matter
    Pages 345-349

About this book

Introduction

Nonsmooth energy functions govern phenomena which occur frequently in nature and in all areas of life. They constitute a fascinating subject in mathematics and permit the rational understanding of yet unsolved or partially solved questions in mechanics, engineering and economics.
This is the first book to provide a complete and rigorous presentation of the quasidifferentiability approach to nonconvex, possibly nonsmooth, energy functions, of the derivation and study of the corresponding variational expressions in mechanics, engineering and economics, and of their numerical treatment. The new variational formulations derived are illustrated by many interesting numerical problems. The techniques presented will permit the reader to check any solution obtained by other heuristic techniques for nonconvex, nonsmooth energy problems. A civil, mechanical or aeronautical engineer can find in the book the only existing mathematically sound technique for the formulation and study of nonconvex, nonsmooth energy problems.
Audience: The book will be of interest to pure and applied mathematicians, physicists, researchers in mechanics, civil, mechanical and aeronautical engineers, structural analysts and software developers. It is also suitable for graduate courses in nonlinear mechanics, nonsmooth analysis, applied optimization, control, calculus of variations and computational mechanics.

Keywords

Calculus of Variations algorithm algorithms calculus mechanics modeling optimization stability

Authors and affiliations

  • Vladimir F. Dem’yanov
    • 1
  • Georgios E. Stavroulakis
    • 2
  • Ludmila N. Polyakova
    • 1
  • Panagiotis D. Panagiotopoulos
    • 3
    • 4
  1. 1.Department of MathematicsSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Lehr- und Forschungsgebiet für Mechanik; Lehrstuhl C für MathematikRWTHAachenGermany
  3. 3.Department of Civil EngineeringAristotle UniversityThessalonikiGreece
  4. 4.Faculty of Mathematics and PhysicsRWTHAachenGermany

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4615-4113-4
  • Copyright Information Springer-Verlag US 1996
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4613-6844-1
  • Online ISBN 978-1-4615-4113-4
  • Series Print ISSN 1571-568X
  • Buy this book on publisher's site