Bias Temperature Instability for Devices and Circuits

  • Tibor Grasser

Table of contents

  1. Front Matter
    Pages i-xi
  2. Part I

    1. Front Matter
      Pages 1-1
    2. Andreas Kerber, Eduard Cartier
      Pages 3-31
    3. Thomas Aichinger, Gregor Pobegen, Michael Nelhiebel
      Pages 33-51
    4. Hans Reisinger
      Pages 75-109
    5. Stewart E. Rauch III
      Pages 135-160
    6. B. Kaczer, M. Toledano-Luque, J. Franco, P. Weckx
      Pages 161-176
    7. Jason P. Campbell, Patrick M. Lenahan
      Pages 177-228
    8. V. V. Afanas’ev, M. Houssa, A. Stesmans
      Pages 229-252
    9. Jian F. Zhang
      Pages 253-285
  3. Part II

    1. Front Matter
      Pages 303-303
    2. Al-Moatasem El-Sayed, Alexander L. Shluger
      Pages 305-321
    3. Salvatore Maria Amoroso, Louis Gerrer, Fikru Adamu-Lema, Stanislav Markov, Asen Asenov
      Pages 323-348
    4. Franz Schanovsky, Tibor Grasser
      Pages 379-408
    5. Wolfgang Goes, Franz Schanovsky, Tibor Grasser
      Pages 409-446
  4. Part III

    1. Front Matter
      Pages 483-483
    2. Gregor Pobegen, Thomas Aichinger, Michael Nelhiebel
      Pages 485-505
    3. Souvik Mahapatra
      Pages 507-532
    4. Ninoslav Stojadinović, Ivica Manić, Danijel Danković, Snežana Djorić-Veljković, Vojkan Davidović, Aneta Prijić et al.
      Pages 533-559
    5. Kai Zhao, Siddarth Krishnan, Barry Linder, James H. Stathis
      Pages 561-584
    6. Chadwin D. Young, Gennadi Bersuker
      Pages 585-596
    7. M. Toledano-Luque, B. Kaczer
      Pages 597-614
    8. Jacopo Franco, Ben Kaczer
      Pages 615-641
    9. D. M. Fleetwood, E. X. Zhang, X. Shen, C. X. Zhang, R. D. Schrimpf, S. T. Pantelides
      Pages 661-675
  5. Part IV

    1. Front Matter
      Pages 677-677
    2. John Keane, Xiaofei Wang, Pulkit Jain, Chris H. Kim
      Pages 679-717
    3. Ketul B. Sutaria, Jyothi B. Velamala, Venkatesa Ravi, Gilson Wirth, Takashi Sato, Yu Cao
      Pages 719-749
    4. Gilson Wirth, Yu Cao, Jyothi B. Velamala, Ketul B. Sutaria, Takashi Sato
      Pages 751-782
    5. Javier Martin-Martinez, Rosana Rodriguez, Montse Nafria
      Pages 783-810

About this book


This book provides a single-source reference to one of the more challenging reliability issues plaguing modern semiconductor technologies, negative bias temperature instability.  Readers will benefit from state-of-the art coverage of research in topics such as time dependent defect spectroscopy, anomalous defect behavior, stochastic modeling with additional metastable states, multiphonon theory, compact modeling with RC ladders and implications on device reliability and lifetime.

 ·         Enables readers to understand and model negative bias temperature instability, with an emphasis on dynamics;

·         Includes coverage of DC vs. AC stress, duty factor dependence and bias dependence;

·         Explains time dependent defect spectroscopy, as a measurement method that operates on nanoscale MOSFETs;

·         Introduces new defect model for metastable defect states, nonradiative multiphonon theory and stochastic behavior.


Metastable Defects in Semiconductor Devices Nanoscale MOSFETs Negative Bias Temperature Instability Semiconductor Device Lifetime Semiconductor Device Reliability Stochastic Behavior in Semiconductor Devices

Editors and affiliations

  • Tibor Grasser
    • 1
  1. 1.Institute for MicroelectronicsTechnische Universität WienWienAustria

Bibliographic information

  • DOI
  • Copyright Information Springer Science+Business Media New York 2014
  • Publisher Name Springer, New York, NY
  • eBook Packages Engineering
  • Print ISBN 978-1-4614-7908-6
  • Online ISBN 978-1-4614-7909-3
  • Buy this book on publisher's site