© 2012

Linear Algebra

  • Contains considerably more material on differential equations, as examples and as motivation, than is typical in a linear algebra textbook

  • Includes an excellent selection of good exercises

  • Classroom tested for an upper undergraduate course in linear algebra


Part of the Undergraduate Texts in Mathematics book series (UTM)

Table of contents

  1. Front Matter
    Pages i-x
  2. Peter Petersen
    Pages 1-123
  3. Peter Petersen
    Pages 125-226
  4. Peter Petersen
    Pages 227-291
  5. Peter Petersen
    Pages 293-370
  6. Peter Petersen
    Pages 371-427
  7. Back Matter
    Pages 383-387

About this book


This textbook on linear algebra includes the key topics of the subject that most advanced undergraduates need to learn before entering graduate school. All the usual topics, such as complex vector spaces, complex inner products, the Spectral theorem for normal operators, dual spaces, the minimal polynomial, the Jordan canonical form, and the rational canonical form, are covered, along with a chapter on determinants at the end of the book. In addition, there is material throughout the text on linear differential equations and how it integrates with all of the important concepts in linear algebra.
This book has several distinguishing features that set it apart from other linear algebra texts.  For example: Gaussian elimination is used as the key tool in getting at eigenvalues; it takes an essentially determinant-free approach to linear algebra; and systems of linear differential equations are used as frequent motivation for the reader.  Another motivating aspect of the book is the excellent and engaging exercises that abound in this text.
This textbook is written for an upper-division undergraduate course on Linear Algebra.  The prerequisites for this book are a familiarity with basic matrix algebra and elementary calculus, although any student who is willing to think abstractly should not have too much difficulty in understanding this text.


Gaussian elimination Jordan canonical form characteristic polynomial complex inner products dual spaces eigenvalues linear algebra linear differential equations linear maps linear operators minimal polynomial spectral theorem vector spaces

Authors and affiliations

  1. 1.Department of MathematicsUniversity of California, Los AngelesLos AngelesUSA

About the authors

Peter Petersen is currently a professor of mathematics at University of California, Los Angeles.

Bibliographic information


From the reviews:

“The discussions and examples are clear, interesting, and appropriately thorough. There are numerous well-chosen exercises to test the readers understanding and, in some cases, to further develop some of the ideas. … a text that should be included in every undergraduate mathematics library. Even a beginning student will be well-rewarded by exploring various topics in this book.” (F. J. Papp, zbMATH, Vol. 1282, 2014)