Advertisement

Complex Analysis and Special Topics in Harmonic Analysis

  • Carlos A. Berenstein
  • Roger Gay

Table of contents

  1. Front Matter
    Pages i-x
  2. Carlos A. Berenstein, Roger Gay
    Pages 1-108
  3. Carlos A. Berenstein, Roger Gay
    Pages 109-197
  4. Carlos A. Berenstein, Roger Gay
    Pages 198-259
  5. Carlos A. Berenstein, Roger Gay
    Pages 260-298
  6. Carlos A. Berenstein, Roger Gay
    Pages 299-352
  7. Carlos A. Berenstein, Roger Gay
    Pages 353-469
  8. Back Matter
    Pages 471-482

About this book

Introduction

A companion volume to the text "Complex Variables: An Introduction" by the same authors, this book further develops the theory, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include: Boundary values of holomorphic functions in the sense of distributions; interpolation problems and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the theorem of L. Schwarz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic function theory.

Keywords

Complex analysis calculus differential equation functional analysis harmonic analysis

Authors and affiliations

  • Carlos A. Berenstein
    • 1
  • Roger Gay
    • 2
  1. 1.Mathematics Department and Institute for Systems ResearchUniversity of MarylandCollege ParkUSA
  2. 2.Centre de Recherche en MathématiquesUniversité de Bordeaux ITalence (cedex)France

Bibliographic information