Review of Progress in Quantitative Nondestructive Evaluation

Volume 7B

  • Donald O. Thompson
  • Dale E. Chimenti

Table of contents

  1. Front Matter
    Pages i-iv
  2. H. N. G. Wadley
    Pages 881-892
  3. J. A. Simmons, E. Drescher-Krasicka, H. N. G. Wadley, M. Rosen, T. M. Hsieh
    Pages 893-901
  4. A. K. Mal, R. D. Weglein
    Pages 903-910
  5. Cecil M. Teller, K. Jerome Diercks, Yoseph Bar-Cohen, Nick N. Shah
    Pages 935-942
  6. Jonathan H. Gosse, Leroy R. Hause
    Pages 953-959
  7. D. S. Kupperman, S. Majumdar, S. R. MacEwen, R. L. Hitterman, J. P. Singh, R. A. Roberts et al.
    Pages 961-969
  8. J. B. Walter, L. A. Lott, K. L. Telschow
    Pages 971-978
  9. Tasdiq Ahmed, Kenneth W. Johnson, Aldo Migione, John W. Monzyk, Gouliang Yang, Maqsood uz Zaman et al.
    Pages 979-985
  10. Subhendu K. Datta, Arvind H. Shah, Y. Al-Nassar, R. L. Bratton
    Pages 987-994
  11. John R. Bowler, Harold A. Sabbagh, L. David Sabbagh
    Pages 1021-1027
  12. J. Qu, J. D. Achenbach
    Pages 1029-1036
  13. M. S. Hughes, S. M. Handley, J. G. Miller, E. I. Madaras
    Pages 1037-1044
  14. B. R. Tittmann, R. Houston, B. Hosten
    Pages 1069-1074
  15. F. J. Margetan, T. A. Gray, R. B. Thompson, B. P. Newberry
    Pages 1083-1092
  16. B. G. Frock, R. W. Martin, T. J. Moran, K. D. Shimmin
    Pages 1093-1099
  17. S. S. Russell, S. S. Lin, E. G. Henneki II
    Pages 1101-1107
  18. M. T. Quinn, J. R. Hribar, R. L. Ruiz, G. F. Hawkins
    Pages 1117-1123
  19. D. M. Mechtel, A. G. Andreou, D. N. Christodoulides, J. Wagner, C. R. Westgate, C. H. Palmer et al.
    Pages 1133-1140
  20. John M. Winter Jr., Robert E. Green Jr., William S. Corak
    Pages 1153-1160
  21. H. K. Heinrich, B. R. Hemenway, R. A. Marsland, D. M. Bloom
    Pages 1161-1166
  22. James W. Wagner
    Pages 1177-1184
  23. R. C. Addison Jr., D. B. Marshall
    Pages 1185-1194
  24. J. T. Fanton, C.-H. Chou, B. T. Khuri-Yakub, G. S. Kino
    Pages 1195-1202
  25. L. F. Bresse, D. A. Hutchins, K. Lundgren
    Pages 1219-1226
  26. D. J. Bracci, P. Garikepati, D. C. Jiles, O. Buck
    Pages 1255-1262
  27. Peter B. Nagy, Laszlo Adler
    Pages 1263-1271
  28. Ken Telschow, John Walter, Dennis Kunerth
    Pages 1285-1292
  29. D. A. Sotiropoulos, J. D. Achenbach
    Pages 1293-1300

About this book


It has been shown both experimentally {2} and theoretically {2,3} that surface skimming SH waves propagating along symmetry axes of the texture have velocities that differ in proportion to the magnitude of any stress that lies along one of the symmetry axes. Specifically, the stress is directly proportional to the relative velocity difference through the equation -,--V ik=---V. -=ki) ( I) cr. = 2G (-V ~ ik where cr. is the stress in the direction i, G is the shear modulus and Vik is the ~elocity of an SH wave propagating in the i direction and polarized in the k direction. This rather simple relationship is particularly useful because the constant of proportionality involves only the well known shear modulus and the velocity term can be measured directly by observing the transit time shift when a transmitter-receiver pair of SH wave transducers are rotated through 90 degrees on the surface of the part. Experimentally, Equation (I) was tested on the web of railroad rails which had been loaded by a 200,000 pound mechanical testing machine {I}. The method of exciting and detecting the necessary surface skimming SH waves used electromagnetic acoustic transducers (EMATs) that operated through a magnetostrictive mechanism at high magnetic fields {4}. Wave velocities parallel and perpendicular to the axis of the rail on the web differed by the amount predicted by Equation (I) to an absolute accuracy of 30 percent in the worst case.


X-ray ceramics composite material crystal deformation fatigue glass metals microscopy non-destructive testing polymer semiconductors thermography ultrasonic testing ultrasound

Editors and affiliations

  • Donald O. Thompson
    • 1
  • Dale E. Chimenti
    • 2
  1. 1.Ames Laboratory (USDOE)Iowa State UniversityAmesUSA
  2. 2.Materials Laboratory, Air Force Wright Aeronautical LaboratoriesWright-Patterson Air Force BaseDaytonUSA

Bibliographic information