Calcium and Ion Channel Modulation

  • Alan D. Grinnell
  • David Armstrong
  • Meyer B. Jackson

Table of contents

  1. Front Matter
    Pages i-xxii
  2. Voltage-Activated Calcium Channels

    1. Front Matter
      Pages 1-1
    2. Lou Byerly, Susumu Hagiwara
      Pages 3-18
    3. A. P. Fox, L. D. Hirning, D. V. Madison, E. W. McCleskey, R. J. Miller, M. C. Nowycky et al.
      Pages 63-74
    4. Joy A. Umbach, Cameron B. Gundersen
      Pages 75-86
  3. Intracellular Calcium and Cell Function: Sensory Transduction, Modulation of Excitability, and Neurosecretion

    1. Front Matter
      Pages 87-87
    2. Gordon L. Fain, Walter H. Schrüder
      Pages 103-118
    3. A. Hermann, C. Erxleben, D. Armstrong
      Pages 119-131
    4. Stephen J. Smith, Luis R. Osses, George J. Augustine
      Pages 147-155
  4. Ion Channel Modulation by Neurotransmitters and Second Messengers

About this book

Introduction

Cellular neurobiology has been transformed in the past decade by new technologies and fundamental discoveries. One result is an enormous increase in our understanding of how ion channels function in nerve and muscle cells and a widening perspective on the role of ion channels in non-neuronal cell physiology and development. Patch clamp techniques now permit direct observation of the transitions between functional confor­ mations of individual ion channels in their native membrane. Recombinant DNA techniques are being used to determine the primary structure of ion channel proteins and to test hypotheses about channel conformations, sites of grating and modulation, and the basis of ion selectivity. At the same time, biochemical techniques have revealed intricate signalling systems in­ side cells, involving second messengers such as calcium, phospholipids and cyclic nucleotides, which interface with the external milieu through GTP binding proteins and regulate cell metabolism by altering protein phos­ phorylation. This panorama of second messenger systems has greatly increas­ ed our application for their potential role in regulating ion channel function. We now recognize that ion channels are much more complicated than we once thought, and more interesting. They are not simply isolated macro­ molecules in the membrane, gated directly by depolarization or trans­ mitter binding to open briefly at a fixed conductance and then close or inactivate. Instead, individual channels now appear to have many open and closed states that are regulated independently by voltage and transmitters.

Keywords

DNA activation biology cell cell physiology escherichia coli growth membrane metabolism neurobiology neurotransmitter physiology proteins receptor regulation

Editors and affiliations

  • Alan D. Grinnell
    • 1
  • David Armstrong
    • 2
  • Meyer B. Jackson
    • 3
  1. 1.UCLA School of MedicineLos AngelesUSA
  2. 2.National Institute of Environmental Health SciencesResearch TriangleUSA
  3. 3.University of California, Los AngelesLos AngelesUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4613-0975-8
  • Copyright Information Springer-Verlag US 1988
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-8273-0
  • Online ISBN 978-1-4613-0975-8
  • About this book