Stability of Materials

  • A. Gonis
  • P. E. A. Turchi
  • Josef Kudrnovský

Part of the NATO ASI Series book series (NSSB, volume 355)

Table of contents

  1. Front Matter
    Pages i-xiii
  2. Numerical Simulations and Phenomenology

    1. Front Matter
      Pages 1-1
    2. Invited papers

    3. Contributed papers

  3. Electronic Structure Theories

    1. Front Matter
      Pages 235-235
    2. Invited papers

    3. Contributed papers

      1. D. A. Papaconstantopoulos, M. J. Mehl
        Pages 325-332
      2. J. S. Faulkner, Yang Wang, G. M. Stocks
        Pages 333-338
      3. D. D. Johnson, J. D. Althoff, J. B. Staunton, M. F. Ling, F. J. Pinski
        Pages 339-345
      4. Väclav Drchal, Josef Kudrnovský, Ilja Turek
        Pages 355-360
      5. P. E. A. Turchi, Prabhakar P. Singh, G. M. Stocks
        Pages 367-373
      6. Barry M. Klein, Z. W. Lu, Alex Zunger
        Pages 375-380
      7. T. Deutsch, A. Pasturel
        Pages 381-386
      8. E. Bruno, B. Ginatempo, E. S. Giuliano
        Pages 387-392
      9. L. Vitos, J. Kollár, H. L. Skriver
        Pages 393-399
      10. Sheng N. Sun, Nicholas Kioussis, Say-Peng Lim, A. Gonis, W. Gourdin
        Pages 401-406
      11. Sheng N. Sun, Nicholas Kioussis, Mikael Ciftan, A. Gonis
        Pages 413-418
      12. N. Papanikolaou, N. Stefanou, R. Zeller, P. H. Dederichs
        Pages 419-424
      13. I. Turek, J. Kudrnovský, M. Šob, V. Drchal
        Pages 431-436
  4. Materials Properties and Characterization

    1. Front Matter
      Pages 471-471
    2. Invited papers

      1. Gustaaf Van Tendeloo
        Pages 473-507
      2. Patrick Veyssière
        Pages 509-546
      3. Kyosuke Kishida, Shigenobu Yokoshima, David R. Johnson, Haruyuki Inui, Masaharu Yamaguchi
        Pages 547-579
      4. J. Th. M. De Hosson, W. P. Vellingal, X. B. Zhou, V. Vitek
        Pages 581-614

About this book


Engineering materials with desirable physical and technological properties requires understanding and predictive capability of materials behavior under varying external conditions, such as temperature and pressure. This immediately brings one face to face with the fundamental difficulty of establishing a connection between materials behavior at a microscopic level, where understanding is to be sought, and macroscopic behavior which needs to be predicted. Bridging the corresponding gap in length scales that separates the ends of this spectrum has been a goal intensely pursued by theoretical physicists, experimentalists, and metallurgists alike. Traditionally, the search for methods to bridge the length scale gap and to gain the needed predictive capability of materials properties has been conducted largely on a trial and error basis, guided by the skill of the metallurgist, large volumes of experimental data, and often ad hoc semi phenomenological models. This situation has persisted almost to this day, and it is only recently that significant changes have begun to take place. These changes have been brought about by a number of developments, some of long standing, others of more recent vintage.


Metall Phase Potential alloy crystal deformation materials properties model modeling simulation

Editors and affiliations

  • A. Gonis
    • 1
  • P. E. A. Turchi
    • 1
  • Josef Kudrnovský
    • 2
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Czech Academy of SciencesPrahaCzech Republic

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag US 1996
  • Publisher Name Springer, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4613-8028-3
  • Online ISBN 978-1-4613-0385-5
  • Series Print ISSN 0258-1221
  • Buy this book on publisher's site