Advertisement

Orthogonal Polynomials for Exponential Weights

  • Eli Levin
  • Doron S. Lubinsky

Part of the CMS Books in Mathematics book series (CMSBM)

Table of contents

  1. Front Matter
    Pages i-xi
  2. Eli Levin, Doron S. Lubinsky
    Pages 1-34
  3. Eli Levin, Doron S. Lubinsky
    Pages 35-62
  4. Eli Levin, Doron S. Lubinsky
    Pages 63-94
  5. Eli Levin, Doron S. Lubinsky
    Pages 95-108
  6. Eli Levin, Doron S. Lubinsky
    Pages 109-143
  7. Eli Levin, Doron S. Lubinsky
    Pages 145-167
  8. Eli Levin, Doron S. Lubinsky
    Pages 169-229
  9. Eli Levin, Doron S. Lubinsky
    Pages 231-251
  10. Eli Levin, Doron S. Lubinsky
    Pages 253-291
  11. Eli Levin, Doron S. Lubinsky
    Pages 293-311
  12. Eli Levin, Doron S. Lubinsky
    Pages 313-323
  13. Eli Levin, Doron S. Lubinsky
    Pages 325-357
  14. Eli Levin, Doron S. Lubinsky
    Pages 359-383
  15. Eli Levin, Doron S. Lubinsky
    Pages 385-399
  16. Eli Levin, Doron S. Lubinsky
    Pages 401-418
  17. Back Matter
    Pages 419-476

About this book

Introduction

The analysis of orthogonal polynomials associated with general weights was a major theme in classical analysis in the twentieth century, and undoubtedly will continue to grow in importance in the future.
In this monograph, the authors investigate orthogonal polynomials for exponential weights defined on a finite or infinite interval. The interval should contain 0, but need not be symmetric about 0; likewise the weight need not be even. The authors establish bounds and asymptotics for orthonormal and extremal polynomials, and their associated Christoffel functions. They deduce bounds on zeros of extremal and orthogonal polynomials, and also establish Markov- Bernstein and Nikolskii inequalities.
The authors have collaborated actively since 1982 on various topics, and have published many joint papers, as well as a Memoir of the American Mathematical Society. The latter deals with a special case of the weights treated in this book. In many ways, this book is the culmination of 18 years of joint work on orthogonal polynomials, drawing inspiration from the works of many researchers in the very active field of orthogonal polynomials.

Keywords

Smooth function approximation theory extrema orthogonal polynomials potential theory

Authors and affiliations

  • Eli Levin
    • 1
  • Doron S. Lubinsky
    • 2
  1. 1.Department of MathematicsThe Open University of IsraelTel AvivIsrael
  2. 2.Centre for Applicable Analysis and Number Theory Department of MathematicsWitwatersrand UniversityWitsSouth Africa

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4613-0201-8
  • Copyright Information Springer-Verlag New York, Inc. 2001
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-6563-4
  • Online ISBN 978-1-4613-0201-8
  • Series Print ISSN 1613-5237
  • Buy this book on publisher's site