Transport in Transition Regimes

  • Naoufel Ben Abdallah
  • Irene M. Gamba
  • Christian Ringhofer
  • Anton Arnold
  • Robert T. Glassey
  • Pierre Degond
  • C. David Levermore
Conference proceedings

Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 135)

Table of contents

  1. Front Matter
    Pages i-x
  2. Piotr Biler, Jean Dolbeault, Maria J. Esteban, Peter A. Markowich, Tadeusz Nadzieja
    Pages 37-56
  3. Russel E. Caflisch, Lorenzo Pareschi
    Pages 57-73
  4. Jose A. Carrillo, Irene M. Gamba, Orazio Muscato, Chi-Wang Shu
    Pages 75-84
  5. Pierre Charrier, Bruno Dubroca, Luc Mieussens, Rodolphe Turpault
    Pages 85-101
  6. Jean-François Collet, Thierry Goudon, Sara Hariz, Frederic Poupaud, Alexis Vasseur
    Pages 103-120
  7. P. Degond, M. Lemou, J. L. Lòpez
    Pages 121-136
  8. Pierre Degond, C. David Levermore, Christian Schmeiser
    Pages 137-153
  9. Nader Masmoudi
    Pages 217-230
  10. Henning Struchtrup
    Pages 265-276
  11. Back Matter
    Pages 293-301

About these proceedings


IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wide range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.


dynamics heat transfer semiconductor simulation thermodynamics

Editors and affiliations

  • Naoufel Ben Abdallah
    • 1
  • Irene M. Gamba
    • 2
  • Christian Ringhofer
    • 3
  • Anton Arnold
    • 4
  • Robert T. Glassey
    • 5
  • Pierre Degond
    • 6
  • C. David Levermore
    • 7
  1. 1.Laboratoire MIPUniversité Paul SabatierFrance
  2. 2.Department of MathematicsUniversity of Texas at AustinAustinUSA
  3. 3.Department of MathematicsArizona State UniversityTempeUSA
  4. 4.Angewandte MathematikUniversität des SaarlandesSaarbruckenGermany
  5. 5.Department of MathematicsIndiana UniversityBloomingtonUSA
  6. 6.Laboratoire MIPUniversité Paul SabatierFrance
  7. 7.CSCAMMUniversity of MarylandCollege ParkUSA

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag New York, Inc. 2004
  • Publisher Name Springer, New York, NY
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-6507-8
  • Online ISBN 978-1-4613-0017-5
  • Series Print ISSN 0940-6573
  • Buy this book on publisher's site