Book Volume 129 2004

Representation Theory

A First Course

Authors:

ISBN: 978-3-540-00539-1 (Print) 978-1-4612-0979-9 (Online)

Table of contents (26 chapters)

previous Page of 2
  1. Front Matter

    Pages i-xv

  2. Finite Groups

    1. Front Matter

      Pages 1-2

    2. No Access

      Chapter

      Pages 3-11

      Representations of Finite Groups

    3. No Access

      Chapter

      Pages 12-25

      Characters

    4. No Access

      Chapter

      Pages 26-43

      Examples; Induced Representations; Group Algebras; Real Representations

    5. No Access

      Chapter

      Pages 44-62

      Representations of \({\mathfrak{S}_{_d}}\) : Young Diagrams and Frobenius’s Character Formula

    6. No Access

      Chapter

      Pages 63-74

      Representations of \({\mathfrak{U}_d}\) and \(G{L_2}\left( {{\mathbb{F}_q}} \right)\)

    7. No Access

      Chapter

      Pages 75-88

      Weyl’s Construction

  3. Lie Groups and Lie Algebras

    1. Front Matter

      Pages 89-91

    2. No Access

      Chapter

      Pages 93-103

      Lie Groups

    3. No Access

      Chapter

      Pages 104-120

      Lie Algebras and Lie Groups

    4. No Access

      Chapter

      Pages 121-132

      Initial Classification of Lie Algebras

    5. No Access

      Chapter

      Pages 133-145

      Lie Algebras in Dimensions One, Two, and Three

    6. No Access

      Chapter

      Pages 146-160

      Representations of sl2

    7. No Access

      Chapter

      Pages 161-174

      Representations of sl3ℂ, Part I

    8. No Access

      Chapter

      Pages 175-193

      Representations ofsl3ℂ, Part II: Mainly Lots of Examples

  4. The Classical Lie Algebras and Their Representations

    1. Front Matter

      Pages 195-195

    2. No Access

      Chapter

      Pages 197-210

      The General Setup: Analyzing the Structure and Representations of an Arbitrary Semisimple Lie Algebra

    3. No Access

      Chapter

      Pages 211-237

      sl4ℂ and sln

    4. No Access

      Chapter

      Pages 238-252

      Symplectic Lie Algebras

    5. No Access

      Chapter

      Pages 253-266

      sp6ℂ and sp2n

    6. No Access

      Chapter

      Pages 267-281

      Orthogonal Lie Algebras

    7. No Access

      Chapter

      Pages 282-298

      so6ℂ, so7ℂ and som

    8. No Access

      Chapter

      Pages 299-315

      Spin Representations of \(\mathfrak{s}{\mathfrak{d}_m}\mathbb{C}\)

previous Page of 2