Advertisement

H∞-Control for Distributed Parameter Systems: A State-Space Approach

  • Bert van Keulen

Part of the Systems & Control: Foundations & Applications book series (SCFA)

Table of contents

  1. Front Matter
    Pages i-vii
  2. Bert van Keulen
    Pages 1-16
  3. Bert van Keulen
    Pages 17-74
  4. Bert van Keulen
    Pages 101-129
  5. Bert van Keulen
    Pages 130-176
  6. Bert van Keulen
    Pages 177-204
  7. Bert van Keulen
    Pages 205-206
  8. Bert van Keulen
    Pages 207-213
  9. Bert van Keulen
    Pages 214-220
  10. Bert van Keulen
    Pages 221-229
  11. Back Matter
    Pages 230-241

About this book

Introduction

VI 5.3 Proof of the measurement-feedback result. 144 5.4 Relaxation of the a priori assumptions .. 165 5.4.1 Including the feedthroughs . . . . . 165 5.4.2 How to 'remove' the regularity assumptions 174 6 Examples and conclusions 177 6.1 Delay systems in state-space . . . . . . . . . . 177 6.1.1 Dynamic controllers for delay systems. 180 184 6.1.2 A linear quadratic control problem . . 6.1.3 Duality ............... . . 189 6.2 The mixed-sensitivity problem for delay systems 192 6.2.1 Introduction and statement of the problem. 192 6.2.2 Main result .............. . 194 6.3 Conclusions and directions for future research. 200 A Stability theory 205 A.1 205 A.2 206 B Differentiability and some convergence results 207 B.l 207 208 B.2 B.3 209 209 B.4 B.5 209 B.6 211 B.7 213 214 C The invariant zeros condition C.1 214 221 D The relation between P, Q and P 221 D.1 ............ .... . Bibliography 230 239 Index Preface Control of distributed parameter systems is a fascinating and challenging top­ ic, from both a mathematical and an applications point of view. The same can be said about Hoc-control theory, which has become very popular lately. I am therefore pleased to present in this book a complete treatment of the state-space solution to the Hoo-control problem for a large class of distributed parameter systems.

Keywords

Invariant Mathematica control control theory duality proof stability stability theory

Authors and affiliations

  • Bert van Keulen
    • 1
  1. 1.Department of MathematicsUniversity of GroningenThe Netherlands

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4612-0347-6
  • Copyright Information Birkhäuser Boston 1993
  • Publisher Name Birkhäuser, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-6718-8
  • Online ISBN 978-1-4612-0347-6
  • Series Print ISSN 2324-9749
  • Buy this book on publisher's site