Lossy Image Compression

Domain Decomposition-Based Algorithms

  • K.K. Shukla
  • M.V. Prasad

Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Table of contents

  1. Front Matter
    Pages i-xii
  2. K. K. Shukla, M. V. Prasad
    Pages 1-11
  3. K. K. Shukla, M. V. Prasad
    Pages 13-41
  4. K. K. Shukla, M. V. Prasad
    Pages 43-64
  5. K. K. Shukla, M. V. Prasad
    Pages 65-86
  6. K. K. Shukla, M. V. Prasad
    Pages 87-89

About this book

Introduction

Good quality digital images have high storage and bandwidth requirements. In modern times, with increasing user expectation for image quality, efficient compression is necessary to keep memory and transmission time within reasonable limits.

Image compression is concerned with minimization of the number of information carrying units used to represent an image. Lossy compression techniques incur some loss of information which is usually imperceptible. In return for accepting this distortion, we obtain much higher compression ratios than is possible with lossless compression.

Salient features of this book include:

  • Four new image compression algorithms and implementation of these algorithms
  • Detailed discussion of fuzzy geometry measures and their application in image compression algorithms
  • New domain decomposition based algorithms using image quality measures and study of various quality measures for gray scale image compression
  • Compression algorithms for different parallel architectures and evaluation of time complexity for encoding on all architectures
  • Parallel implementation of image compression algorithms on a cluster in Parallel Virtual Machine (PVM) environment.

This book will be of interest to graduate students, researchers and practicing engineers looking for new image compression techniques that provide good perceived quality in digital images with higher compression ratios than is possible with conventional algorithms.

Keywords

Compression Ratio Domain Decompression Fuzzy Measures Image Compression Parallel Algorithms Parallel Virtual Machine Speedup

Authors and affiliations

  • K.K. Shukla
    • 1
  • M.V. Prasad
    • 2
  1. 1.Banaras Hindu UniversityIndian Institute of TechnologyVaranasiIndia
  2. 2.IRBTHyderabadIndia

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4471-2218-0
  • Copyright Information K.K. Shukla 2011
  • Publisher Name Springer, London
  • eBook Packages Computer Science
  • Print ISBN 978-1-4471-2217-3
  • Online ISBN 978-1-4471-2218-0
  • Series Print ISSN 2191-5768
  • Series Online ISSN 2191-5776
  • About this book