Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure

  • Henry W. Haslach Jr.

Table of contents

  1. Front Matter
    Pages i-xiv
  2. Henry W. Haslach Jr
    Pages 1-19
  3. Henry W. Haslach Jr
    Pages 21-30
  4. Henry W. Haslach Jr
    Pages 61-108
  5. Henry W. Haslach Jr
    Pages 109-130
  6. Henry W. Haslach Jr
    Pages 189-237
  7. Henry W. Haslach Jr
    Pages 257-268
  8. Henry W. Haslach Jr
    Pages 269-285
  9. Henry W. Haslach Jr
    Pages 287-291
  10. Back Matter
    Pages 293-297

About this book

Introduction

Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also:   

•             Explains the theory behind a thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes, based on supplementing the second law with a maximum dissipation criterion 

•             Provides a geometric setting for non-equilibrium thermodynamics in differential topology and, in particular, contact structures that generalize Gibbs 

•            Models processes that include thermoviscoelasticity, thermoviscoplasticity, thermoelectricity and dynamic fracture 

•            Recovers several standard time-dependent constitutive models as maximum dissipation processes 

•            Produces transport models that predict finite velocity of propagation 

•            Emphasizes applications to the time-dependent modeling of soft biological tissue

 Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.

Keywords

Bifurcations Biomaterials Continuum thermodynamics Homogeneous thermodynamics Hyperelastic energy density Joule heating Non-equilibrium thermodynamics Nonlinear dynamical systems Onsager Tensors Viscoelasticity Viscoplasticity

Authors and affiliations

  • Henry W. Haslach Jr.
    • 1
  1. 1.Dept. Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-1-4419-7765-6
  • Copyright Information Springer Science+Business Media, LLC 2011
  • Publisher Name Springer, New York, NY
  • eBook Packages Engineering
  • Print ISBN 978-1-4419-7764-9
  • Online ISBN 978-1-4419-7765-6
  • About this book