Advertisement

Noncommutative Harmonic Analysis

In Honor of Jacques Carmona

  • Patrick Delorme
  • Michèle Vergne

Part of the Progress in Mathematics book series (PM, volume 220)

Table of contents

  1. Front Matter
    Pages i-xvii
  2. Velleda Baldoni-Silva, Michèle Vergne
    Pages 1-19
  3. Nicole Bopp, Hubert Rubenthaler
    Pages 79-118
  4. Pascale Harinck, Marie-Noëlle Panichi
    Pages 177-199
  5. John D. Lorch, Lisa A. Mantini, Jodie D. Novak
    Pages 395-418
  6. Stephen D. Miller, Wilfried Schmid
    Pages 419-440
  7. E. P. van den Ban
    Pages 487-509

About this book

Introduction

This volume is devoted to the theme of Noncommutative Harmonic Analysis and consists of articles in honor of Jacques Carmona, whose scientific interests range through all aspects of Lie group representations. The topics encompass the theory of representations of reductive Lie groups, and especially the determination of the unitary dual, the problem of geometric realizations of representations, harmonic analysis on reductive symmetric spaces, the study of automorphic forms, and results in harmonic analysis that apply to the Langlands program.

General Lie groups are also discussed, particularly from the orbit method perspective, which has been a constant source of inspiration for both the theory of reductive Lie groups and for general Lie groups. Also covered is Kontsevich quantization, which has appeared in recent years as a powerful tool.

Contributors: V. Baldoni-Silva; D. Barbasch; P. Bieliavsky; N. Bopp; A. Bouaziz; P. Delorme; P. Harinck; A. Hersant; M.S. Khalgui; A.W. Knapp; B. Kostant; J. Kuttler; M. Libine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M. Vergne; and N.R. Wallach

Keywords

Dolbeault cohomology Group representation calculus cohomology differential equation harmonic analysis homology representation theory

Editors and affiliations

  • Patrick Delorme
    • 1
  • Michèle Vergne
    • 2
  1. 1.Institut de Mathématiques de LuminyUPR 9016 CNRSMarseille Cedex 9France
  2. 2.Centre de MathématiquesEcole PolytechniquePalaiseau CedexFrance

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-8176-8204-0
  • Copyright Information Birkhäuser Boston 2004
  • Publisher Name Birkhäuser, Boston, MA
  • eBook Packages Springer Book Archive
  • Print ISBN 978-1-4612-6489-7
  • Online ISBN 978-0-8176-8204-0
  • Series Print ISSN 0743-1643
  • Series Online ISSN 2296-505X
  • Buy this book on publisher's site