Advertisement

Integral Methods in Science and Engineering

Analytic and Numerical Techniques

  • C. Constanda
  • A. Largillier
  • M. Ahues

Table of contents

  1. Front Matter
    Pages i-xxiii
  2. Pamela N. Blair, Wilson Lamb, Iain W. Stewart
    Pages 19-24
  3. Ricardo Celorrio, Maria-Luisa Rapún, Francisco-Javier Sayas
    Pages 31-36
  4. Loïc Chevallier
    Pages 37-40
  5. Igor Chudinovich, Christian Constanda
    Pages 41-46
  6. Luc Giraud, Martin B. van Gijzen
    Pages 61-66
  7. Roger Godard, Jen Shi Chang, Xiaoyi Xu
    Pages 67-72
  8. Paul J. Harris, Hui Wang, Roma Chakrabarti, David Henwood
    Pages 73-78
  9. Alexey A. Ignatyev
    Pages 103-107
  10. Rekha P. Kulkarni
    Pages 109-114
  11. Desmond F. McGhee, Naglaa M. Madbouly, Gary F. Roach
    Pages 133-138
  12. Radu Mitric, Christian Constanda
    Pages 151-156
  13. Maria-Cecilia Rivara, Nancy Hitschfeld-Kahler
    Pages 193-203
  14. Seppo Seikkala, Markku Hihnala
    Pages 233-238
  15. Jianzhong Su, Bao Loc Tran
    Pages 239-244
  16. Paulo B. Vasconcelos, Filomena D. d’Almeida
    Pages 261-266
  17. Marco T. Vilhena, Haroldo F. de Campos Velho, Cynthia F. Segatto, Glênio A. Gonçalves
    Pages 267-272
  18. Back Matter
    Pages 279-280

About this book

Introduction

An outgrowth of The Seventh International Conference on Integral Methods in Science and Engineering, this book focuses on applications of integration-based analytic and numerical techniques. The contributors to the volume draw from a number of physical domains and propose diverse treatments for various mathematical models through the use of integration as an essential solution tool.

Physically meaningful problems in areas related to finite and boundary element techniques, conservation laws, hybrid approaches, ordinary and partial differential equations, and vortex methods are explored in a rigorous, accessible manner. The new results provided are a good starting point for future exploitation of the interdisciplinary potential of integration as a unifying methodology for the investigation of mathematical models.

 

 

Keywords

Algebra Implicit function Integral equation Potential algorithm algorithms composite material differential equation mechanical engineering modeling operator partial differential equation scattering theory simulation stability

Editors and affiliations

  • C. Constanda
    • 1
  • A. Largillier
    • 2
  • M. Ahues
    • 2
  1. 1.Department of Mathematical and Computer SciencesUniversity of TulsaTulsaUSA
  2. 2.Université de St. Étienne Équipe d’Analyse NumériqueSt. ÉtienneFrance

Bibliographic information