Advertisement

Robust Output LQ Optimal Control via Integral Sliding Modes

  • Leonid Fridman
  • Alexander Poznyak
  • Francisco Javier Bejarano

Part of the Systems & Control: Foundations & Applications book series (SCFA)

Table of contents

  1. Front Matter
    Pages i-xii
  2. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
    Pages 1-8
  3. Optimal Control and Sliding Mode

    1. Front Matter
      Pages 9-9
    2. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 11-20
    3. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 21-30
    4. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 31-41
  4. Min–Max Output Robust LQ Control

    1. Front Matter
      Pages 43-43
    2. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 45-57
    3. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 59-75
    4. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 77-93
  5. Practical Examples

    1. Front Matter
      Pages 95-95
    2. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 97-101
    3. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 103-113
    4. Leonid Fridman, Alexander Poznyak, Francisco Javier Bejarano
      Pages 115-121
  6. Back Matter
    Pages 123-149

About this book

Introduction

Featuring original research from well-known experts in the field of sliding mode control, this monograph presents new design schemes for implementing LQ control solutions in situations where the output system is the only information provided about the state of the plant. This new design works under the restrictions of matched disturbances without losing its desirable features. On the cutting-edge of optimal control research, Robust Output LQ Optimal Control via Integral Sliding Modes is an excellent resource for both graduate students and professionals involved in linear systems, optimal control, observation of systems with unknown inputs, and automatization.

In the theory of optimal control, the linear quadratic (LQ) optimal problem plays an important role due to its physical meaning, and its solution is easily given by an algebraic Riccati equation. This solution turns out to be restrictive, however, because of two assumptions: the system must be free from disturbances and the entire state vector must be known. A new technique, called  output integral sliding modes, eliminates the effects of disturbances acting in the same subspace as the control. By using LQ-optimal control together with integral sliding modes, the former is made robust and based on output information only. Thus optimal control theory improves its applicability.

Keywords

Riccati equation integral sliding modes linear quadratic optimal control multi-plant systems optimal control robust control robust maximum principle sliding mode control

Authors and affiliations

  • Leonid Fridman
    • 1
  • Alexander Poznyak
    • 2
  • Francisco Javier Bejarano
    • 3
  1. 1.Departamento de Ingeniería de Control y RobóticaUniversidad Nacional Autonoma De MexicoMexico CityMexico
  2. 2.Control AutomaticoCentro de Investigacion y Estudios AvanzadosMexico CityMexico
  3. 3.Department of Research and Posgraduates Studies (SEPI)ESIME Ticomán, Instituto Politecnico NacionalMexico CityMexico

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-8176-4962-3
  • Copyright Information Springer Science+Business Media New York 2014
  • Publisher Name Birkhäuser, New York, NY
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-0-8176-4961-6
  • Online ISBN 978-0-8176-4962-3
  • Series Print ISSN 2324-9749
  • Series Online ISSN 2324-9757
  • Buy this book on publisher's site