Classic Papers in Combinatorics

  • Ira Gessel
  • Gian-Carlo Rota
Part of the Modern Birkhäuser Classics book series (MBC)

Table of contents

  1. Front Matter
    Pages I-X
  2. F. P. Ramsey
    Pages 1-24
  3. Hassler Whitney
    Pages 25-48
  4. P. Erdös, G. Szckeres
    Pages 49-56
  5. P. Hall†
    Pages 58-62
  6. R. L. Brooks, C. A. B. Smith, A. H. Stone, W. T. Tutte
    Pages 88-116
  7. R. L. Brooks
    Pages 118-121
  8. Irving Kaplansky
    Pages 122-123
  9. W. T. Tutte
    Pages 124-138
  10. Paul R. Halmos, Herbert E. Vaughan
    Pages 146-147
  11. T. van Aardenne-Ehrenfest, N.G. de Bruijn
    Pages 149-163
  12. W. T. Tutte
    Pages 164-178
  13. P. Erdös, R. Rado
    Pages 179-241
  14. L. R. Ford Jr., D. R. Fulkerson
    Pages 243-248
  15. G. Polya
    Pages 249-257
  16. David Gale
    Pages 259-268
  17. P. Erdös
    Pages 276-280

About this book

Introduction

This volume surveys the development of combinatorics since 1930 by presenting in chronological order the fundamental results of the subject proved in over five decades of original papers by:.-T. van Aardenne-Ehrenfest.-R.L. Brooks.-N.G. de Bruijn.-G.F. Clements.-H.H. Crapo.-R.P. Dilworth.-J. Edmonds.-P.Erdös.-L.R. Ford, Jr.-D.R. Fulkerson.-D. Gale.-L. Geissinger.-I.J. Good.-R.L. Graham.-A.W. Hales.-P. Hall.-P.R. Halmos.-R.I. Jewett.-I. Kaplansky.-P.W. Kasteleyn.-G. Katona.-D.J. Kleitman.-K. Leeb.-B. Lindström.-L. Lovász.-D. Lubell.-C. St. J.A. Nash-Williams.-G. Pólya.-F.P. Ramsey.-G.C. Rota.-B.L. Rothschild.-H.J. Ryser.-C. Schensted.-M.P. Schützenberger.-R.P. Stanley.-G. Szekeres.-W.T. Tutte.-H.E. Vaughan.-H. Whitney.

Keywords

Acyclic orientations of graphs Combinatorial theorem of Macaulay Combinatorics Graph Theory and Probability Möbius Functions Möbius inversion in lattices Non-separable and planar graphs Partition Calculus Positional games Set Theory Sperner's lemma Subsets decomposition theorem lemma of Littlewood and Oxford partially ordered sets

Editors and affiliations

  • Ira Gessel
    • 1
  • Gian-Carlo Rota
    • 2
  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA
  2. 2.Department of MathematicsMassachusetts Institute of Technology (MIT)CambridgeUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-8176-4842-8
  • Copyright Information Birkhäuser Boston 1987
  • Publisher Name Birkhäuser Boston
  • eBook Packages Springer Book Archive
  • Print ISBN 978-0-8176-4841-1
  • Online ISBN 978-0-8176-4842-8