Representation Theory, Complex Analysis, and Integral Geometry

  • Bernhard Krötz
  • Omer Offen
  • Eitan Sayag

Table of contents

  1. Front Matter
    Pages i-x
  2. Bernhard Krötz, Henrik Schlichtkrull
    Pages 1-8
  3. Gautam Chinta, Omer Offen
    Pages 41-59
  4. Dan Ciubotaru, Kyo Nishiyama, Peter E. Trapa
    Pages 61-86
  5. Joseph Bernstein
    Pages 97-132
  6. Marcus J. Slupinski, Robert J. Stanton
    Pages 185-230
  7. B. Speh, T. N. Venkataramana
    Pages 231-249

About this book

Introduction

This book is an outgrowth of the special term “Harmonic Analysis, Representation Theory, and Integral Geometry,” held at the Max Planck Institute for Mathematics and the Hausdorff Research Institute for Mathematics in Bonn during the summer of 2007.

The contributions in the volume provide a window into a variety of subjects related to reductive groups:  real and complex analysis on homogeneous spaces, arithmetic aspects of moment geometry, geometry of flag varieties, restriction theory of representations, modern aspects of special functions, multiple Dirichlet series, and unfolding identities in the theory of automorphic forms.

Throughout the work, great emphasis was placed on making the articles accessible to interested newcomers to these fields and graduate students. Representation Theory, Complex Analysis, and Integral Geometry aims to stimulate future research in these areas.

Contributors: J. Bernstein, G. Chinta, D. Ciubotaru, J. Faraut, S. Gindikin, J. Jorgenson, J. Kramer, B. Krötz, Y.A. Neretin, K. Nishiyama, O. Offen, H. Schlichtkrull, M.J. Slupinski, R.J. Stanton, B. Speh, P.E. Trapa, T.N.Venkataramana

Keywords

Helgason conjecture Rankin–Selberg Stein–Sahi complementary series Verma modules basic Lie algebras geometry of flag varieties moment maps multiple Dirichlet series prehomogeneous vector space representation theory, complex analysis, integral geometry symmetric spaces

Editors and affiliations

  • Bernhard Krötz
    • 1
  • Omer Offen
    • 2
  • Eitan Sayag
    • 3
  1. 1., Institut für AnalysisLeibniz Universität HannoverHannoverGermany
  2. 2., Department of MathematicsTechnion-Israel Institute of TechnologyHaifaIsrael
  3. 3., Department of MathematicsBen-Gurion University of the NegevBe'er ShevaIsrael

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-8176-4817-6
  • Copyright Information Springer Science+Business Media, LLC 2012
  • Publisher Name Birkhäuser Boston
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-0-8176-4816-9
  • Online ISBN 978-0-8176-4817-6
  • About this book