Model Based Inference in the Life Sciences: A Primer on Evidence

  • David R. Anderson

Table of contents

  1. Front Matter
    Pages i-xxiv
  2. Pages 19-50
  3. Pages 105-124
  4. Pages 125-140
  5. Pages 141-146
  6. Back Matter
    Pages 147-184

About this book

Introduction

The abstract concept of "information" can be quantified and this has led to many important advances in the analysis of data in the empirical sciences. This text focuses on a science philosophy based on "multiple working hypotheses" and statistical models to represent them. The fundamental science question relates to the empirical evidence for hypotheses in this set—a formal strength of evidence. Kullback-Leibler information is the information lost when a model is used to approximate full reality. Hirotugu Akaike found a link between K-L information (a cornerstone of information theory) and the maximized log-likelihood (a cornerstone of mathematical statistics). This combination has become the basis for a new paradigm in model based inference. The text advocates formal inference from all the hypotheses/models in the a priori set—multimodel inference.

This compelling approach allows a simple ranking of the science hypothesis and their models. Simple methods are introduced for computing the likelihood of model i, given the data; the probability of model i, given the data; and evidence ratios. These quantities represent a formal strength of evidence and are easy to compute and understand, given the estimated model parameters and associated quantities (e.g., residual sum of squares, maximized log-likelihood, and covariance matrices). Additional forms of multimodel inference include model averaging, unconditional variances, and ways to rank the relative importance of predictor variables.

This textbook is written for people new to the information-theoretic approaches to statistical inference, whether graduate students, post-docs, or professionals in various universities, agencies or institutes. Readers are expected to have a background in general statistical principles, regression analysis, and some exposure to likelihood methods. This is not an elementary text as it assumes reasonable competence in modeling and parameter estimation.

DAVID R. ANDERSON retired recently from serving as a senior scientist with the U.S. Geological Survey and professor in the Department of Fish, Wildlife, and Conservation Biology at Colorado State University. He has an emeritus professorship at CSU and is president of the Applied Information Company in Fort Collins. He has authored 18 scientific books and research monographs and over 100 journal publications. He has received a variety of awards, including U.S. Department of Interior’s Meritorious Service Award and The Wildlife Society’s 2004 Aldo Leopold Memorial Award and Medal.

Keywords

Akaike’s information criterion AIC Master Patient Index Model based inference Quantitative evidence Statistical Inference information theory mathematical statistics multimodel inference statistics

Authors and affiliations

  • David R. Anderson
    • 1
  1. 1.Colorado Cooperative Fish & Wildlife Research Unit Department of Fish, Wildlife and Conservation BiologyColorado State UniversityFort CollinsUSA

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-387-74075-1
  • Copyright Information Springer-Verlag New York 2008
  • Publisher Name Springer, New York, NY
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-0-387-74073-7
  • Online ISBN 978-0-387-74075-1
  • About this book