Applications of Symmetry Methods to Partial Differential Equations

  • George W. Bluman
  • Alexei F. Cheviakov
  • Stephen C. Anco
Part of the Applied Mathematical Sciences book series (AMS, volume 168)

Table of contents

  1. Front Matter
    Pages 1-18
  2. George W. Bluman, Alexei F. Cheviakov, Stephen C. Anco
    Pages 1-120
  3. George W. Bluman, Alexei F. Cheviakov, Stephen C. Anco
    Pages 121-186
  4. George W. Bluman, Alexei F. Cheviakov, Stephen C. Anco
    Pages 187-244
  5. George W. Bluman, Alexei F. Cheviakov, Stephen C. Anco
    Pages 245-296
  6. George W. Bluman, Alexei F. Cheviakov, Stephen C. Anco
    Pages 297-367
  7. Back Matter
    Pages 1-29

About this book

Introduction

This is an accessible book on advanced symmetry methods for partial differential equations. Topics include conservation laws, local symmetries, higher-order symmetries, contact transformations, delete "adjoint symmetries," Noether’s theorem, local mappings, nonlocally related PDE systems, potential symmetries, nonlocal symmetries, nonlocal conservation laws, nonlocal mappings, and the nonclassical method. Graduate students and researchers in mathematics, physics, and engineering will find this book useful.

This book is a sequel to Symmetry and Integration Methods for Differential Equations (2002) by George W. Bluman and Stephen C. Anco. The emphasis in the present book is on how to find systematically symmetries (local and nonlocal) and conservation laws (local and nonlocal) of a given PDE system and how to use systematically symmetries and conservation laws for related applications.

Keywords

Applications Conservation Laws Invariant Solutions Linearization Nonclassical method Nonlocal symmetries Partial Differential Equations Symmetries Symmetry Methods differential equation partial differential equation

Authors and affiliations

  • George W. Bluman
    • 1
  • Alexei F. Cheviakov
    • 2
  • Stephen C. Anco
    • 3
  1. 1.Dept. MathematicsUniversity of British ColumbiaVancouverCanada
  2. 2.Dept. MathematicsUniversity of British ColumbiaVancouverCanada
  3. 3.Dept. MathematicsBrock UniversitySt. CatharinesCanada

Bibliographic information

  • DOI https://doi.org/10.1007/978-0-387-68028-6
  • Copyright Information Springer-Verlag New York 2010
  • Publisher Name Springer, New York, NY
  • eBook Packages Mathematics and Statistics
  • Print ISBN 978-0-387-98612-8
  • Online ISBN 978-0-387-68028-6
  • Series Print ISSN 0066-5452