Table of contents

  1. Front Matter
  2. W. R. Alford, Andrew Granville, Carl Pomerance
    Pages 1-16
  3. Wieb Bosma, Peter Stevenhagen
    Pages 17-17
  4. Roger A. Golliver, Arjen K. Lenstra, Kevin S. McCurley
    Pages 18-27
  5. Bruce A. Dodson, Matthew J. Haines
    Pages 41-41
  6. Sachar Paulus
    Pages 42-42
  7. Jean-Marc Couveignes, François Morain
    Pages 43-58
  8. Nelson Stephens
    Pages 59-59
  9. Frank Lehmann, Markus Maurer, Volker Müller, Victor Shoup
    Pages 60-70
  10. Dexter Kozen, Susan Landau, Richard Zippel
    Pages 80-92
  11. Leonard M. Adleman
    Pages 108-121
  12. Noam D. Elkies
    Pages 122-133
  13. Hervé Daudé, Philippe Flajolet, Brigitte Vallée
    Pages 144-158
  14. Johannes Buchmann
    Pages 160-168
  15. Jeffrey Shallit, Jonathan Sorenson
    Pages 169-183
  16. Bohdan S. Majewski, George Havas
    Pages 184-193
  17. Shuhong Gao, Scott A. Vanstone
    Pages 220-220
  18. Leonard M. Adleman, Ming-Deh Huang, Kireeti Kompella
    Pages 249-249
  19. Marc Deléglise, Joël Rivat
    Pages 264-264
  20. Igor E. Shparlinski
    Pages 265-279
  21. Paul Pritchard
    Pages 280-288
  22. Guangheng Ji, Hongwen Lu
    Pages 290-290
  23. Leonard M. Adleman, Kevin S. McCurley
    Pages 291-322
  24. Back Matter

About these proceedings


This volume presents the refereed proceedings of the First Algorithmic Number Theory Symposium, ANTS-I, held at Cornell University, Ithaca, NY in May 1994.
The 35 papers accepted for inclusion in this book address many current issues of algorithmic, computational and complexity-theoretic aspects of number theory and thus report the state-of-the-art in this exciting area of research; the book also contributes essentially to foundational research in cryptology and coding.
Of particular value is a collection entitled "Open Problems in Number Theoretic Complexity, II" contributed by Len Adleman and Kevin McCurley. This survey presents on 32 pages 36 central open problems and relates them to the literature by means of some 160 references.


Finite Fields Greatest Common Divisor (GCD) Größtter Gemeinsamer Teiler Integer Factorization Number theory Polynom-Faktorisierung Polynominal Factorization Siebmethoden Sieve Methods algorithms ants complexity

Bibliographic information

  • DOI
  • Copyright Information Springer-Verlag Berlin Heidelberg 1994
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-58691-3
  • Online ISBN 978-3-540-49044-9
  • Series Print ISSN 0302-9743
  • Series Online ISSN 1611-3349
  • Buy this book on publisher's site