Algebraic and Coalgebraic Methods in the Mathematics of Program Construction

International Summer School and Workshop Oxford, UK, April 10–14, 2000 Revised Lectures

  • Roland Backhouse
  • Roy Crole
  • Jeremy Gibbons

Part of the Lecture Notes in Computer Science book series (LNCS, volume 2297)

Table of contents

  1. Front Matter
    Pages I-XIV
  2. Roy Crole
    Pages 1-19
  3. Hilary A. Priestley
    Pages 21-78
  4. Peter Aczel
    Pages 79-88
  5. Roland Backhouse
    Pages 89-150
  6. Jeremy Gibbons
    Pages 151-203
  7. Henk Doornbos, Roland Backhouse
    Pages 204-236
  8. Bart Jacobs
    Pages 237-281
  9. Richard Bird, Jeremy Gibbons, Shin-Cheng Mu
    Pages 282-309
  10. Burghard von Karger
    Pages 310-386
  11. Back Matter
    Pages 387-387

About this book

Introduction

Program construction is about turning specifications of computer software into implementations. Recent research aimed at improving the process of program construction exploits insights from abstract algebraic tools such as lattice theory, fixpoint calculus, universal algebra, category theory, and allegory theory.
This textbook-like tutorial presents, besides an introduction, eight coherently written chapters by leading authorities on ordered sets and complete lattices, algebras and coalgebras, Galois connections and fixed point calculus, calculating functional programs, algebra of program termination, exercises in coalgebraic specification, algebraic methods for optimization problems, and temporal algebra.

Keywords

Algebraic Methods Allegory Theory Category Theory Coalgebraic Methods Correct Software Design Fixpoint Calculus Formal Methods Formal Specification Lattice Theory Program Construction Program Development Universal Algebra calculus sets

Editors and affiliations

  • Roland Backhouse
    • 1
  • Roy Crole
    • 2
  • Jeremy Gibbons
    • 3
  1. 1.School of Computer Science and ITUniversity of NottinghamNottinghamUK
  2. 2.Dept. of Mathematics and Computer ScienceUniversity of LeicesterLeicesterUK
  3. 3.Oxford University Computing LaboratoryOxfordUK

Bibliographic information

  • DOI https://doi.org/10.1007/3-540-47797-7
  • Copyright Information Springer-Verlag Berlin Heidelberg 2002
  • Publisher Name Springer, Berlin, Heidelberg
  • eBook Packages Springer Book Archive
  • Print ISBN 978-3-540-43613-3
  • Online ISBN 978-3-540-47797-6
  • Series Print ISSN 0302-9743
  • About this book