Geometric Properties for Incomplete data

  • Reinhard Klette
  • Ryszard Kozera
  • Lyle  Noakes
  • Joachim Weickert

Table of contents

  1. Front Matter
    Pages 1-6
  2. Continous Geometry

    1. G. Sommer, B. Rosenhahn, C. Perwass
      Pages 3-22
    2. C. Perwass, W. Forstner
      Pages 23-41
    3. R.T. Farouki, C.Y Han
      Pages 43-58
    4. L. Noakes
      Pages 77-101
    5. A. Robles-Kelly, E.R Hancook
      Pages 103-122
  3. Discrete Geometry

    1. H. Dorksen-Reiter, I. Debled-Rennesson
      Pages 145-159
    2. T.K Linh, A. Imiya, A. Torii
      Pages 161-182
    3. S. Weber, Ch. Schnorr, Th. Schule, J. Hornegger
      Pages 183-197
    4. W. Skarbek, K. Kucharski, M. Bober
      Pages 199-219
    5. M.N Huxley, R. Klette, J. Zunic
      Pages 221-235
    6. A. Imiya
      Pages 259-280
  4. Approximation and Regularization

About this book

Introduction

Computer vision and image analysis require interdisciplinary collaboration between mathematics and engineering. This book addresses the area of high-accuracy measurements of length, curvature, motion parameters and other geometrical quantities from acquired image data. It is a common problem that these measurements are incomplete or noisy, such that considerable efforts are necessary to regularise the data, to fill in missing information, and to judge the accuracy and reliability of these results. This monograph brings together contributions from researchers in computer vision, engineering and mathematics who are working in this area.

The book can be read both by specialists and graduate students in computer science, electrical engineering or mathematics who take an interest in data evaluations by approximation or interpolation, in particular data obtained in an image analysis context.

Keywords

Approximation Interpolation Moment algorithms brandonwiskunde computer vision discrete geometry image analysis shading

Editors and affiliations

  • Reinhard Klette
    • 1
  • Ryszard Kozera
    • 2
  • Lyle  Noakes
    • 3
  • Joachim Weickert
    • 4
  1. 1.The University of AucklandAucklandNew Zealand
  2. 2.The University of Western AustraliaPerthAustralia
  3. 3.The University of Western AustraliaPerthAustralia
  4. 4.Saarland UniversitySaarbruckenGermany

Bibliographic information

  • DOI https://doi.org/10.1007/1-4020-3858-8
  • Copyright Information Springer 2006
  • Publisher Name Springer, Dordrecht
  • eBook Packages Computer Science
  • Print ISBN 978-1-4020-3857-0
  • Online ISBN 978-1-4020-3858-7
  • About this book