Zinc Oxide — A Material for Micro- and Optoelectronic Applications

  • Norbert H. Nickel
  • Evgenii Terukov
Conference proceedings

Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 194)

Table of contents

  1. Front Matter
    Pages i-xvi
  2. ZnO Bulk and Layer Growth

    1. Robert Triboulet, Vicente Munoz-Sanjosé, Ramon Tena-Zaera, Mari Carmen Martinez-Tomas, Saïd Hassani
      Pages 3-14
    2. A. Kh. Abduev, A. Sh. Asvarov, A. K. Akhmedov, I. K. Kamilov, S. N. Sulyanov
      Pages 15-24
    3. M. B. Kotlyarevsky, I. V. Rogozin, A. V. Marakhovsky
      Pages 25-34
  3. Electrical, Optical, and Structural Properties

    1. David C. Look, Bruce B. Claflin, Gene Cantwell, Seong-Ju Park, Gary M. Renlund
      Pages 37-46
    2. M. Grundmann, H. von Wenckstern, R. Pickenhain, S. Weinhold, B. Chengnui, O. Breitenstein
      Pages 47-57
    3. V. A. Karpina, V. D. Khranovskyy, V. I. Lazorenko, G. V. Lashkarev, I. V. Blonsky, V. A. Baturin
      Pages 59-68
    4. Vladimir Nikitenko
      Pages 69-81
    5. Thomas Nobis, Evgeni M. Kaidashev, Andreas Rahm, Michael Lorenz, Marius Grundmann
      Pages 83-98
    6. E. Müller, D. Livinov, D. Gerthsen, C. Kirchner, A. Waag, N. Oleynik et al.
      Pages 99-111
  4. Role of Hydrogen

    1. M. D. McCluskey, S. J. Jokela
      Pages 125-132
    2. E. V. Lavrov, F. Börrnert, J. Weber
      Pages 133-144
  5. Fundamental Properties

    1. A.V. Rodina, M. Strassburg, M. Dworzak, U. Haboeck, A. Hoffmann, H. R. Alves et al.
      Pages 159-170
    2. V. Val. Sobolev, V. V. Sobolev
      Pages 171-182
  6. Device Applications

    1. Walther Fuhs
      Pages 197-209
    2. E. V. Kalinina, A. E. Cherenkov, G. A. Onushkin, Ya. I. Alivov, D. C. Look, B. M. Ataev et al.
      Pages 211-216
    3. E. Fortunato, P. Barquinha, A. Pimentel, A. Gonçalves, A. Marques, L. Pereira et al.
      Pages 225-238
  7. Back Matter
    Pages 239-240

About these proceedings


Recently, a significant effort has been devoted to the investigation of ZnO as a suitable semiconductor for UV light-emitting diodes, lasers, and detectors and hetero-substrates for GaN. Research is driven not only by the technological requirements of state-of-the-art applications but also by the lack of a fundamental understanding of growth processes, the role of intrinsic defects and dopants, and the properties of hydrogen. The NATO Advanced Research Workshop on “Zinc oxide as a material for micro- and optoelectronic applications”, held from June 23 to June 25 2004 in St. Petersburg, Russia, was organized accordingly and started with the growth of ZnO. A variety of growth methods for bulk and layer growth were discussed. These techniques comprised growth methods such as closed space vapor transport (CSVT), metal-organic chemical vapor deposition, reactive ion sputtering, and pulsed laser deposition. From a structural point of view using these growth techniques ZnO can be fabricated ranging from single crystalline bulk material to polycrystalline ZnO and nanowhiskers. A major aspect of the ZnO growth is doping. n-type doping is relatively easy to accomplish with elements such al Al or Ga. At room temperature single crystal ZnO exhibits a resistivity of about 0. 3 -cm, an electron mobility of 2 17 -3 225 cm /Vs, and a carrier concentration of 10 cm . In n-type ZnO two shallow donors are observable with activation energies of 30 – 40 meV and 60 – 70 meV.


Absorption Transmission exciton microscopy optical properties optics spectroscopy thin films

Editors and affiliations

  • Norbert H. Nickel
    • 1
  • Evgenii Terukov
    • 2
  1. 1.Hahn-Meitner-Institut BerlinGermany
  2. 2.A.F. Ioffe Physico-Technical InstituteSt. PetersburgRussia

Bibliographic information