Complex Numbers from A to... Z

  • Titu Andreescu
  • Dorin Andrica

Table of contents

About this book


It is impossible to imagine modern mathematics without complex numbers. Complex Numbers from A to . . . Z introduces the reader to this fascinating subject that, from the time of L. Euler, has become one of the most utilized ideas in mathematics.

The exposition concentrates on key concepts and then elementary results concerning these numbers. The reader learns how complex numbers can be used to solve algebraic equations and to understand the geometric interpretation of complex numbers and the operations involving them.

The theoretical parts of the book are augmented with rich exercises and problems at various levels of difficulty. A special feature of the book is the last chapter, a selection of outstanding Olympiad and other important mathematical contest problems solved by employing the methods already presented.

The book reflects the unique experience of the authors. It distills a vast mathematical literature, most of which is unknown to the western public, and captures the essence of an abundant problem culture. The target audience includes undergraduates, high school students and their teachers, mathematical contestants (such as those training for Olympiads or the W. L. Putnam Mathematical Competition) and their coaches, as well as anyone interested in essential mathematics.


Grad algebra geometry ksa number theory

Editors and affiliations

  • Titu Andreescu
    • 1
  • Dorin Andrica
    • 2
  1. 1.University of Texas at Dallas School of Natural Sciences and MathematicsRichardsonUSA
  2. 2.“Babes-Bolyai” University Faculty of MathematicsCluj-NapocaRomania

Bibliographic information