Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Toxicological Research
  3. Article

Thresholds of Genotoxic and Non-Genotoxic Carcinogens

  • Invited Review
  • Open access
  • Published: 01 October 2018
  • Volume 34, pages 281–290, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Toxicological Research Aims and scope Submit manuscript
Thresholds of Genotoxic and Non-Genotoxic Carcinogens
Download PDF
  • Takehiko Nohmi1 
  • 849 Accesses

  • 93 Citations

  • 27 Altmetric

  • 3 Mentions

  • Explore all metrics

Abstract

Exposure to chemical agents is an inevitable consequence of modern society; some of these agents are hazardous to human health. The effects of chemical carcinogens are of great concern in many countries, and international organizations, such as the World Health Organization, have established guidelines for the regulation of these chemicals. Carcinogens are currently categorized into two classes, genotoxic and non-genotoxic carcinogens, which are subject to different regulatory policies. Genotoxic carcinogens are chemicals that exert carcinogenicity via the induction of mutations. Owing to their DNA interaction properties, there is thought to be no safe exposure threshold or dose. Genotoxic carcinogens are regulated under the assumption that they pose a cancer risk for humans, even at very low doses. In contrast, non-genotoxic carcinogens, which induce cancer through mechanisms other than mutations, such as hormonal effects, cytotoxicity, cell proliferation, or epigenetic changes, are thought to have a safe exposure threshold or dose; thus, their use in society is permitted unless the exposure or intake level would exceed the threshold. Genotoxicity assays are an important method to distinguish the two classes of carcinogens. However, some carcinogens have negative results in in vitro bacterial mutation assays, but yield positive results in the in vivo transgenic rodent gene mutation assay. Non-DNA damage, such as spindle poison or topoisomerase inhibition, often leads to positive results in cytogenetic genotoxicity assays such as the chromosome aberration assay or the micronucleus assay. Therefore, mechanistic considerations of tumor induction, based on the results of the genotoxicity assays, are necessary to distinguish genotoxic and non-genotoxic carcinogens. In this review, the concept of threshold of toxicological concern is introduced and the potential risk from multiple exposures to low doses of genotoxic carcinogens is also discussed.

Article PDF

Download to read the full article text

Similar content being viewed by others

Endocrine disrupting chemicals: exposure, effects on human health, mechanism of action, models for testing and strategies for prevention

Article 03 December 2019

Bayram Yilmaz, Hakan Terekeci, … Fahrettin Kelestimur

General Cytotoxicity Assessment by Means of the MTT Assay

Chapter © 2015

Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose–response data

Article Open access 05 July 2023

Jakob Menz, Mario E. Götz, … Bernd Schäfer

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Abbreviations

WHO:

World Health Organization

ADI:

Acceptable daily intake

NOAEL:

No observable adverse effect level

NTP:

National Toxicology Program

ICH:

International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use

S9 mix:

9,000 × g supernatant of liver homogenates of rats pretreated with inducers of drug metabolizing enzymes plus NADPH-generating system

EFSA:

European Food Safety Authority

IARC:

International Agency for Research on Cancer

TLS:

Translesion DNA synthesis

4-NQO:

4-Nitroquinoline-1-oxide

TTC:

Threshold of toxicological concern

TOR:

Threshold of regulation

bw:

Body weight

COC:

Cohort of concern

References

  1. The Food and Agricultural Organization of the United Nations and the World Health Organization (FAO/WHO) (2009) Chapter 5: dose-response assessment and derivation of health-based guidance values in Environmental Health Criteria 240. pp. 2–55.

  2. Kirsch-Volders, M., Aardema, M. and Elhajouji, A. (2000) Concepts of threshold in mutagenesis and carcinogenesis. Mutat. Res., 464, 3–11.

    Article  CAS  PubMed  Google Scholar 

  3. Nohmi, T., Toyoda-Hokaiwado, N., Yamada, M., Masumura, K., Honma, M. and Fukushima, S. (2008) International symposium on genotoxic and carcinogenic thresholds. Genes Environ., 30, 101–107.

    Article  Google Scholar 

  4. Lovell, D.P. (2000) Dose-response and threshold-mediated mechanisms in mutagenesis: statistical models and study design. Mutat. Res., 464, 87–95.

    Article  CAS  PubMed  Google Scholar 

  5. Boice, J.D., Jr. (2017) The linear nonthreshold (LNT) model as used in radiation protection: an NCRP update. Int. J. Radiat. Biol., 93, 1079–1092.

    Article  CAS  PubMed  Google Scholar 

  6. Auerbach, C. (1958) Radiomimetic substances. Radiat. Res., 9, 33–47.

    Article  CAS  PubMed  Google Scholar 

  7. The Food and Agricultural Organization of the United Nations and the World Health Organization (FAO/WHO) (2009) Chapter 7: risk characterization in Environmental Health Criteria 240: Principles and Methods for Risk Assessment of Chemicals in Food. pp. 1–18.

  8. Bolt, H.M. (2008) The concept of “practical thresholds” in the derivation of occupational exposure limits for carcinogens by the scientific committee on occupatinal exposure limits (SCOEL) of the European Union. Genes Environ., 30, 114–119.

    Article  Google Scholar 

  9. Ashby, J. and Tennant, R.W. (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat. Res., 204, 17–115.

    Article  CAS  PubMed  Google Scholar 

  10. Hayashi, Y. (1992) Overview of genotoxic carcinogens and non-genotoxic carcinogens. Exp. Toxicol. Pathol., 44, 465–471.

    Article  CAS  PubMed  Google Scholar 

  11. MacGregor, J.T., Frotschl, R., White, P.A., Crump, K.S., Eastmond, D.A., Fukushima, S., Guerard, M., Hayashi, M., Soeteman-Hernandez, L.G., Johnson, G.E., Kasamatsu, T., Levy, D.D., Morita, T., Müller, L., Schoeny, R., Schuler, M.J. and Thybaud, V. (2015) IWGT report on quantitative approaches to genotoxicity risk assessment II. Use of point-of-departure (PoD) metrics in defining acceptable exposure limits and assessing human risk. Mutat. Res., 783, 66–78.

    Article  CAS  Google Scholar 

  12. Butterworth, B.E. (1990) Consideration of both genotoxic and nongenotoxic mechanisms in predicting carcinogenic potential. Mutat. Res., 239, 117–132.

    Article  CAS  PubMed  Google Scholar 

  13. Roberts, R.A., Goodman, J.I., Shertzer, H.G., Dalton, T.P. and Farland, W.H. (2003) Rodent toxicity and nongenotoxic carcinogenesis: knowledge-based human risk assessment based on molecular mechanisms. Toxicol. Mech. Methods, 13, 21–29.

    Article  CAS  PubMed  Google Scholar 

  14. Ramirez, T., Eastmond, D.A. and Herrera, L.A. (2007) Non-disjunction events induced by albendazole in human cells. Mutat. Res., 626, 191–195.

    Article  CAS  PubMed  Google Scholar 

  15. Asanami, S. and Shimono, K. (1999) The effect of hyperthermia on micronucleus induction by mutagens in mice. Mutat. Res., 446, 149–154.

    Article  CAS  PubMed  Google Scholar 

  16. Armstrong, M.J., Gara, J.P., Gealy, R., III, Greenwood, S.K., Hilliard, C.A., Laws, G.M. and Galloway, S.M. (2000) Induction of chromosome aberrations in vitro by phenol-phthalein: mechanistic studies. Mutat. Res., 457, 15–30.

    Article  CAS  PubMed  Google Scholar 

  17. Galloway, S.M., Miller, J.E., Armstrong, M.J., Bean, C.L., Skopek, T.R. and Nichols, W.W. (1998) DNA synthesis inhibition as an indirect mechanism of chromosome aberrations: comparison of DNA-reactive and non-DNA-reactive clastogens. Mutat. Res., 400, 169–186.

    Article  CAS  PubMed  Google Scholar 

  18. Elhajouji, A., Van, H.P. and Kirsch-Volders, M. (1995) Indications for a threshold of chemically-induced aneuploidy in vitro in human lymphocytes. Environ. Mol. Mutagen., 26, 292–304.

    Article  CAS  PubMed  Google Scholar 

  19. Kirsch-Volders, M., Gonzalez, L., Carmichael, P. and Kirkland, D. (2009) Risk assessment of genotoxic mutagens with thresholds: a brief introduction. Mutat. Res., 678, 72–75.

    Article  CAS  PubMed  Google Scholar 

  20. Hayashi, M. (2016) The micronucleus test-most widely used in vivo genotoxicity test. Genes Environ., 38, 18. doi:10.1186/s41021-016-0044-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lynch, A., Harvey, J., Aylott, M., Nicholas, E., Burman, M., Siddiqui, A., Walker, S. and Rees, R. (2003) Investigations into the concept of a threshold for topoisomerase inhibitor-induced clastogenicity. Mutagenesis, 18, 345–353.

    Article  CAS  PubMed  Google Scholar 

  22. Elhajouji, A., Lukamowicz, M., Cammerer, Z. and Kirsch-Volders, M. (2011) Potential thresholds for genotoxic effects by micronucleus scoring. Mutagenesis, 26, 199–204.

    Article  CAS  PubMed  Google Scholar 

  23. Maron, D.M. and Ames, B.N. (1983) Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173–215.

    Article  CAS  PubMed  Google Scholar 

  24. Ashby, J. and Tennant, R.W. (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat. Res., 257, 229–306.

    Article  CAS  PubMed  Google Scholar 

  25. Nohmi, T., Masumura, K. and Toyoda-Hokaiwado, N. (2017) Transgenic rat models for mutagenesis and carcinogenesis. Genes Environ., 39, 11. doi:10.1186/s41021-016-0072-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nohmi, T., Katoh, M., Suzuki, H., Matsui, M., Yamada, M., Watanabe, M., Suzuki, M., Horiya, N., Ueda, O., Shibuya, T., Ikeda, H. and Sofuni, T. (1996) A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. Environ. Mol. Mutagen., 28, 465–470.

    Article  CAS  PubMed  Google Scholar 

  27. Nohmi, T., Suzuki, T. and Masumura, K. (2000) Recent advances in the protocols of transgenic mouse mutation assays. Mutat. Res., 455, 191–215.

    Article  CAS  PubMed  Google Scholar 

  28. Masumura, K., Sakamoto, Y., Kumita, W., Honma, M., Nishikawa, A. and Nohmi, T. (2015) Genomic integration of lambda EG10 transgene in gpt delta transgenic rodents. Genes Environ., 37, 24. doi:10.1186/s41021-015-0024-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nohmi, T. (2015) Past, present and future directions of gpt delta rodent gene mutation assays. Food Safety, 4, 1–13.

    Article  Google Scholar 

  30. Suzuki, Y., Umemura, T., Hibi, D., Inoue, T., Jin, M., Ishii, Y., Sakai, H., Nohmi, T., Yanai, T., Nishikawa, A. and Ogawa, K. (2012) Possible involvement of genotoxic mechanisms in estragole-induced hepatocarcinogenesis in rats. Arch. Toxicol., 86, 1593–1601.

    Article  CAS  PubMed  Google Scholar 

  31. Ishii, Y., Takasu, S., Kuroda, K., Matsushita, K., Kijima, A., Nohmi, T., Ogawa, K. and Umemura, T. (2014) Combined application of comprehensive analysis for DNA modification and reporter gene mutation assay to evaluate kidneys of gpt delta rats given madder color or its constituents. Anal. Bioanal. Chem., 406, 2467–2475.

    Article  CAS  PubMed  Google Scholar 

  32. Jin, M., Kijima, A., Hibi, D., Ishii, Y., Takasu, S., Matsushita, K., Kuroda, K., Nohmi, T., Nishikawa, A. and Umemura, T. (2013) In vivo genotoxicity of methyleugenol in gpt delta transgenic rats following medium-term exposure. Toxicol. Sci., 131, 387–394.

    Article  CAS  PubMed  Google Scholar 

  33. Kuroda, K., Ishii, Y., Takasu, S., Kijima, A., Matsushita, K., Watanabe, M., Takahashi, H., Sugita-Konishi, Y., Sakai, H., Yanai, T., Nohmi, T., Ogawa, K. and Umemura, T. (2013) Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology, 311, 216–224.

    Article  CAS  PubMed  Google Scholar 

  34. Maeda, J., Kijima, A., Inoue, K., Ishii, Y., Ichimura, R., Takasu, S., Kuroda, K., Matsushita, K., Kodama, Y., Saito, N., Umemura, T. and Yoshida, M. (2014) In vivo genotoxicity of Ginkgo biloba extract in gpt delta mice and constitutive androstane receptor knockout mice. Toxicol. Sci., 140, 298–306.

    Article  CAS  PubMed  Google Scholar 

  35. Onami, S., Cho, Y.M., Toyoda, T., Horibata, K., Ishii, Y., Umemura, T., Honma, M., Nohmi, T., Nishikawa, A. and Ogawa, K. (2014) Absence of in vivo genotoxicity of 3-monochloropropane-1,2-diol and associated fatty acid esters in a 4-week comprehensive toxicity study using F344 gpt delta rats. Mutagenesis, 29, 295–302.

    Article  CAS  PubMed  Google Scholar 

  36. Kuroiwa, Y., Umemura, T., Nishikawa, A., Kanki, K., Ishii, Y., Kodama, Y., Masumura, K., Nohmi, T. and Hirose, M. (2007) Lack of in vivo mutagenicity and oxidative DNA damage by flumequine in the livers of gpt delta mice. Arch. Toxicol., 81, 63–69.

    Article  CAS  PubMed  Google Scholar 

  37. Wiseman, R.W., Miller, E.C., Miller, J.A. and Liem, A. (1987) Structure-activity studies of the hepatocarcinogenicities of alkenylbenzene derivatives related to estragole and safrole on administration to preweanling male C57BL/6J x C3H/HeJ F1 mice. Cancer Res., 47, 2275–2283.

    CAS  PubMed  Google Scholar 

  38. Sekizawa, J. and Shibamoto, T. (1982) Genotoxicity of safrole-related chemicals in microbial test systems. Mutat. Res., 101, 127–140.

    Article  CAS  PubMed  Google Scholar 

  39. Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., Mortelmans, K. and Speck, W. (1987) Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ. Mutagen., 9 Suppl 9, 1–109.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki, Y., Umemura, T., Ishii, Y., Hibi, D., Inoue, T., Jin, M., Sakai, H., Kodama, Y., Nohmi, T., Yanai, T., Nishikawa, A. and Ogawa, K. (2012) Possible involvement of sulfotransferase 1A1 in estragole-induced DNA modification and carcinogenesis in the livers of female mice. Mutat. Res., 749, 23–28.

    Article  CAS  PubMed  Google Scholar 

  41. Phillips, D.H., Miller, J.A., Miller, E.C. and Adams, B. (1981) Structures of the DNA adducts formed in mouse liver after administration of the proximate hepatocarcinogen 1′-hydroxyestragole. Cancer Res., 41, 176–186.

    CAS  PubMed  Google Scholar 

  42. Alnouti, Y. and Klaassen, C.D. (2006) Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicol. Sci., 93, 242–255.

    Article  CAS  PubMed  Google Scholar 

  43. Srivastava, S., Sinha, R. and Roy, D. (2004) Toxicological effects of malachite green. Aquat. Toxicol., 66, 319–329.

    Article  CAS  PubMed  Google Scholar 

  44. Culp, S.J., Mellick, P.W., Trotter, R.W., Greenlees, K.J., Kodell, R.L. and Beland, F.A. (2006) Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food Chem. Toxicol., 44, 1204–1212.

    Article  CAS  PubMed  Google Scholar 

  45. Fessard, V., Godard, T., Huet, S., Mourot, A. and Poul, J.M. (1999) Mutagenicity of malachite green and leucomalachite green in in vitro tests. J. Appl. Toxicol., 19, 421–430.

    Article  CAS  PubMed  Google Scholar 

  46. Mittelstaedt, R.A., Mei, N., Webb, P.J., Shaddock, J.G., Dobrovolsky, V.N., McGarrity, L.J., Morris, S.M., Chen, T., Beland, F.A., Greenlees, K.J. and Heflich, R.H. (2004) Genotoxicity of malachite green and leucomalachite green in female Big Blue B6C3F1 mice. Mutat. Res., 561, 127–138.

    Article  CAS  PubMed  Google Scholar 

  47. Manjanatha, M.G., Shelton, S.D., Bishop, M., Shaddock, J.G., Dobrovolsky, V.N., Heflich, R.H., Webb, P.J., Blankenship, L.R., Beland, F.A., Greenlees, K.J. and Culp, S.J. (2004) Analysis of mutations and bone marrow micronuclei in Big Blue rats fed leucomalachite green. Mutat. Res., 547, 5–18.

    Article  CAS  PubMed  Google Scholar 

  48. Culp, S.J., Blankenship, L.R., Kusewitt, D.F., Doerge, D.R., Mulligan, L.T. and Beland, F.A. (1999) Toxicity and metabolism of malachite green and leucomalachite green during short-term feeding to Fischer 344 rats and B6C3F1 mice. Chem. Biol. Interact., 122, 153–170.

    Article  CAS  PubMed  Google Scholar 

  49. European Food Safety Authority (EFSA) (2016) Malachite Green in Food. EFSA J., 14, 1–80.

    Google Scholar 

  50. World Health Organization (WHO) (2000) Toxicological evaluation of certain veterinary drug residues in food, fifty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives. WHO Food Additive Series, 45, 75–89.

    Google Scholar 

  51. Umemura, T., Kuroiwa, Y., Tasaki, M., Okamura, T., Ishii, Y., Kodama, Y., Nohmi, T., Mitsumori, K., Nishikawa, A. and Hirose, M. (2007) Detection of oxidative DNA damage, cell proliferation and in vivo mutagenicity induced by dicyclanil, a non-genotoxic carcinogen, using gpt delta mice. Mutat. Res., 633, 46–54.

    Article  CAS  PubMed  Google Scholar 

  52. Kasper, P., Uno, Y., Mauthe, R., Asano, N., Douglas, G., Matthews, E., Moore, M., Mueller, L., Nakajima, M., Singer, T. and Speit, G. (2007) Follow-up testing of rodent carcinogens not positive in the standard genotoxicity testing battery: IWGT workgroup report. Mutat. Res., 627, 106–116.

    Article  CAS  PubMed  Google Scholar 

  53. National Toxicology Program (NTP) (1989) Toxicology and carcinogenesis studies of ochratoxin A (CAS No. 303-47-9) in F344/N rats (gavage studies). Natl. Toxicol. Program. Tech. Rep. Ser., 358, 1–142.

    Google Scholar 

  54. Malir, F., Ostry, V., Pfohl-Leszkowicz, A., Malir, J. and Toman, J. (2016) Ochratoxin A: 50 years of research. Toxins. (Basel), 8, E191. doi:10.3390/toxins8070191.

    Article  CAS  Google Scholar 

  55. International Agency for Research on Cancer (IARC) (1993) Ochratoxin A. IARC Monogr. Eval. Carcinog. Risks Hum., 56, 489–521.

    Google Scholar 

  56. Hibi, D., Suzuki, Y., Ishii, Y., Jin, M., Watanabe, M., Sugita-Konishi, Y., Yanai, T., Nohmi, T., Nishikawa, A. and Umemura, T. (2011) Site-specific in vivo mutagenicity in the kidney of gpt delta rats given a carcinogenic dose of ochratoxin A. Toxicol. Sci., 122, 406–414.

    Article  CAS  PubMed  Google Scholar 

  57. Nohmi, T., Suzuki, M., Masumura, K., Yamada, M., Matsui, K., Ueda, O., Suzuki, H., Katoh, M., Ikeda, H. and Sofuni, T. (1999) Spi− selection: An efficient method to detect gammaray-induced deletions in transgenic mice. Environ. Mol. Mutagen., 34, 9–15.

    Article  CAS  PubMed  Google Scholar 

  58. Fukushima, S., Gi, M., Kakehashi, A. and Wanibuchi, H. (2016) Qualitative and quantitative assessments on low-dose carcinogenicity of genotoxic hepatocarcinogens: dose-response for key events in rat hapatocarcinogenesis in Thresholds of Genotoxic Carcinogens: from Mechanisms to Regulation (Nohmi, T. and Fukushima, S. Eds.). Elsevier, pp. 1–17.

  59. Fukushima, S., Kinoshita, A., Puatanachokchai, R., Kushida, M., Wanibuchi, H. and Morimura, K. (2005) Hormesis and dose-response-mediated mechanisms in carcinogenesis: evidence for a threshold in carcinogenicity of non-genotoxic carcinogens. Carcinogenesis, 26, 1835–1845.

    Article  CAS  PubMed  Google Scholar 

  60. Fukushima, S., Wei, M., Kakehashi, A. and Wanibuchi, H. (2012) Threshold for genotoxic carcinogens: the central concern in carcinogenic risk assessment. Genes Environ., 32, 153–156.

    Article  CAS  Google Scholar 

  61. Jenkins, G.J., Zair, Z., Johnson, G.E. and Doak, S.H. (2010) Genotoxic thresholds, DNA repair, and susceptibility in human populations. Toxicology, 278, 305–310.

    Article  CAS  PubMed  Google Scholar 

  62. Nohmi, T. and Tsuzuki, T. (2016) Possible mechanisms underlying genotoxic thresholds: DNA repair and translesion DNA synthesis in Thresholds of Genotoxic Carcinogens: from Mechanisms to Regulation (Nohmi, T. and Fukushima, S. Eds.) Elsevier, pp. 49–66.

  63. Suzuki, M., Matsui, K., Yamada, M., Kasai, H., Sofuni, T. and Nohmi, T. (1997) Construction of mutants of Salmonella typhimurium deficient in 8-hydroxyguanine DNA glycosylase and their sensitivities to oxidative mutagens and nitro compounds. Mutat. Res., 393, 233–246.

    Article  CAS  PubMed  Google Scholar 

  64. Kim, S.R., Kokubo, K., Matsui, K., Yamada, N., Kanke, Y., Fukuoka, M., Yamada, M. and Nohmi, T. (2005) Light-dependent mutagenesis by benzo[a]pyrene is mediated via oxidative DNA damage. Environ. Mol. Mutagen., 46, 141–149.

    Article  CAS  PubMed  Google Scholar 

  65. Boobis, A., Brown, P., Cronin, M.T.D., Edwards, J., Galli, C.L., Goodman, J., Jacobs, A., Kirkland, D., Luijten, M., Marsaux, C., Martin, M., Yang, C. and Hollnagel, H.M. (2017) Origin of the TTC values for compounds that are genotoxic and/or carcinogenic and an approach for their re-evaluation. Crit Rev. Toxicol., 47, 705–727.

    CAS  PubMed  Google Scholar 

  66. Federal Register (1995) Toxicological principles for the safety assessment of direct food additives and color additives used in food in Fed. Regist. pp. 36582–36596.

  67. Kroes, R., Renwick, A.G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B., Schlatter, J., van, S.F., Vos, J.G. and Würtzen, G. (2004) Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem. Toxicol., 42, 65–83.

    Article  CAS  PubMed  Google Scholar 

  68. Europena Food Safety Authority (EFSA) (2016) Review of the Threshold of Toxicological Concern (TTC) approach and development of new TTC decision tree. EFSA Support. Publ., 13, 1–50.

    Google Scholar 

  69. Munro, I.C., Ford, R.A., Kennepohl, E. and Sprenger, J.G. (1996) Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern. Food Chem. Toxicol., 34, 829–867.

    Article  CAS  PubMed  Google Scholar 

  70. Ohta, T. (2006) Mutagenic activity of a mixture of heterocyclic amines at doses below the biological threshold level of each. Genes Environ., 28, 181–184.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Pathology, Biological Safety Research Center, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan

    Takehiko Nohmi

Authors
  1. Takehiko Nohmi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Takehiko Nohmi.

Rights and permissions

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nohmi, T. Thresholds of Genotoxic and Non-Genotoxic Carcinogens. Toxicol Res. 34, 281–290 (2018). https://doi.org/10.5487/TR.2018.34.4.281

Download citation

  • Received: 03 July 2018

  • Revised: 10 August 2018

  • Accepted: 30 August 2018

  • Published: 01 October 2018

  • Issue Date: October 2018

  • DOI: https://doi.org/10.5487/TR.2018.34.4.281

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Genotoxic carcinogens
  • Non-genotoxic carcinogens
  • Threshold
  • Threshold of toxicological concern
  • TTC
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature