Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Toxicological Research
  3. Article

Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo

  • Original Article
  • Open access
  • Published: 01 April 2018
  • Volume 34, pages 133–141, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Toxicological Research Aims and scope Submit manuscript
Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo
Download PDF
  • Jong-Hyun Nho1 na1,
  • Ho-Kyung Jung1,2 na1,
  • Mu-Jin Lee1,
  • Ji-Hun Jang1,
  • Mi-Ok Sim1,
  • Da-Eun Jeong1,
  • Hyun-Woo Cho1 &
  • …
  • Jong-Choon Kim2 
  • 150 Accesses

  • 26 Citations

  • Explore all metrics

Abstract

Anti-cancer drugs such as cisplatin and doxorubicin are effectively used more than radiotherapy. Cisplatin is a chemotherapeutic drug, used for treatment of various forms of cancer. However, it has side effects such as ototoxicity and nephrotoxicity. Cisplatin-induced nephrotoxicity increases tubular damage and renal dysfunction. Consequently, we investigated the beneficial effect of cynaroside on cisplatin-induced kidney injury using HK-2 cell (human proximal tubule cell line) and an animal model. Results indicated that 10 µM cynaroside diminished cisplatin-induced apoptosis, mitochondrial dysfunction and caspase-3 activation, cisplatin-induced upregulation of caspase-3/MST-1 pathway decreased by treatment of cynaroside in HK-2 cells. To confirm the effect of cynaroside on cisplatin-induced kidney injury in vivo, we used cisplatin exposure animal model (20 mg/kg, balb/c mice, i.p., once a day for 3 days). Renal dysfunction, tubular damage and neutrophilia induced by cisplatin injection were decreased by cynaroside (10 mg/kg, i.p., once a day for 3 days). Results indicated that cynaroside decreased cisplatin-induced kidney injury in vitro and in vivo, and it could be used for improving cisplatin-induced side effects. However, further experiments are required regarding toxicity by high dose cynaroside and caspase-3/ MST-1-linked signal transduction in the animal model.

Article PDF

Download to read the full article text

Similar content being viewed by others

Cancer treatment therapies: traditional to modern approaches to combat cancers

Article 12 October 2023

Rasanpreet Kaur, Alok Bhardwaj & Saurabh Gupta

Regulation of renal nitric oxide and eNOS/iNOS expression by tadalafil participates in the mitigation of amphotericin B–induced renal injury: Down-regulation of NF-κB/iNOS/caspase-3 signaling

Article Open access 28 October 2023

Doaa M. Abdel-Rahman, Basim Anwar Shehata Messiha, … Amany A. Azouz

Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches

Article 21 January 2022

Mohammad Sheibani, Yaser Azizi, … Ahmad Reza Dehpour

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Park, J.C., Park, J.G., Kim, H.J., Hur, J.M., Lee, J.H., Sung, N.J., Chung, S.K. and Choi, J.W. (2002) Effects of extract from Angelica keiskei and its component, cynaroside, on the hepatic bromobenzene-metabolizing enzyme system in rats. Phytother. Res., 16, S24–S27.

    Google Scholar 

  2. Sun, X., Sun, S.G., Wang, M., Xiao, J. and Sun, X.B. (2011) Protective effects of cynaroside against H2O2-induced apoptosis in H9c2 cardiomyoblasts. J. Cell Biochem., 112, 2019–2029.

    Article  CAS  Google Scholar 

  3. Wen, H.U., Ting, G., Jiang, W.J., Dong, G.L., Chen, D.W., Yang, S.L. and Li, H.R. (2015) Effects of ultrahigh pressure extraction on yield and antioxidant activity of chlorogenic acid and cynaroside extracted from flowe bubs of Lonicera japonica. Chin. J. Nat. Med., 13, 445–453.

    Google Scholar 

  4. Lin, L.C., Pai, Y.F. and Tsai, T.H. (2015) Isolation of luteolin and luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and pharmacokinetics in rat. J. Agric. Food Chem., 9, 7700–7706.

    Article  Google Scholar 

  5. Kang, K.J. and Lee, J.H. (2010) Characteristics of gastric cancer in Korea-with an emphasis on the increase of the early gastric cancer (EGC). J. Korean Med. Assoc., 53, 283–289.

    Article  Google Scholar 

  6. Kang, K.P., Kim, D.H., Jung, Y.J., Lee, A.S., Lee, S., Lee, S.Y., Jang, K.Y., Sung, M.J., Park, S.K. and Kim W. (2009) Alpha-lipoic acid attenuates cisplatin-induced acute kidney injury in mice by suppressing renal inflammation. Nephrol. Dial. Transplant., 24, 3012–3020.

    Article  CAS  Google Scholar 

  7. Kolb, R., Ghazi, M. and Barfuss, D. (2003) Inhibition of basolateral transport and cellular accumulation of cDDP and N-acetyl-L-cysteine-cDDP by TEA and PAH in the renal proximal tubule. Cancer. Chemother. Pharmacol., 51, 132–138.

    Article  CAS  Google Scholar 

  8. Ronald, P.M., Raghu. K.T., Ganesan, R. and William, B.R. (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel), 2, 2490–2518.

    Article  Google Scholar 

  9. Yao, X., Panichpisal, K., Kurtzman, M. and Nugent, K. (2007) Cisplatin nephrotoxicity: a review. Am. J. Med. Sci., 334, 115–154.

    Article  Google Scholar 

  10. Ling, P., Lu, T.J., Yuan, C.J. and Lai, M.D. (2008) Biosignaling of mammalian Ste20-related kinases. Cell. Signal., 20, 1237–1247.

    Article  CAS  Google Scholar 

  11. Qin, F., Tian, J., Zhou, D. and Chen, L. (2013) Mst1 and Mst2 kinases: regulations and disease. Cell. Biosci., 3, 31.

    Article  Google Scholar 

  12. Meng, Z., Moroishi, T. and Guan, K.L. (2016) Mechanisms of hippo pathway regulation. Genes Dev., 30, 1–17.

    Article  CAS  Google Scholar 

  13. Amin, A., Federico, P., Zahra, A., Supreet, K., Vrushali, K., Ting, Y., Thomas, F., Wufan, T., Jose, O., Francois, P., Julie, K.C. and Kathrin, M. (2014) MST-1 is a novel regulator of apoptosis in pancreatic beta-cells. Nat. Med., 20, 385–397.

    Article  Google Scholar 

  14. Caretha, L.C. and Jonathan, C. (1995) Cloning and characterization of a human protein kinase with homology to Ste20. J. Biol. Chem., 270, 21695–21700.

    Article  Google Scholar 

  15. Parham, M., Inti, Z., Kristi, B., Luigi, T., Luigi, T., Jeremy, R.J. and Alessandro, L. (2007) Prognostic significance of mammalian sterile20-like kinase 1 in colorectal cancer. Mod. Pathol., 20, 331–338.

    Article  Google Scholar 

  16. Faunel, S., Lewis, E.C., Reznikov, L., Koke, T.S., Somerset, H., Oh, D.J., Li, L., Klein, C.L., Dinarello, C.A. and Edelstein, C.L. (2007) Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J. Phamacol. Exp. Ther., 322, 8–15.

    Article  Google Scholar 

  17. Ozkok, A. and Edelstein, C.L. (2014) Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int., 2014, 967826.

    Article  Google Scholar 

  18. Oh, G.S., Kim, H.J., Shen, A.H., Lee, S.B., Khadka, D., Pandit, A. and So, H.S. (2014) Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolyte Blood Press, 12, 55–65.

    Article  CAS  Google Scholar 

  19. Yuna, F., Xie, Q., Wu, J., Bai, Y., Mao, B., Dong, Y., Bi, W., Ji, G., Tao, W., Wang, Y. and Yuan, Z. (2011) MST-1 promotes apoptosis through regulating sirt1-dependent p53 deacetylation. J. Biol. Chem., 286, 6940–6945.

    Article  Google Scholar 

  20. Xu, C., Liu, C., Huang, W., Tu, S. and Wan, F. (2013) Effect of mst1 overexpression on the growth of human hepatocellular carcinoma HepG2 cells and the sensitivity to cisplatin in vitro. Acta Biochim. Biophys. Sin. (Shanghai), 45, 268–279.

    Article  CAS  Google Scholar 

  21. Ura, S., Masuyama, M., Graves, J.D. and Gotoh, Y. (2001) MST1-JNK promotes apoptosis via caspase-dependent and independent pathways. Genes Cells, 6, 519–530.

    Article  CAS  Google Scholar 

  22. Maejima, Y., Kyoi, S., Zhai, P., Liu, T., Li, H., Lvessa, A., Sciarretta, S., Del Re, D.P., Zablocki, D.K., Hsu, C.P., Lim, D.S., Isobe, M. and Sadoshima, J. (2013) Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat. Med., 19, 1478–1488.

    Article  CAS  Google Scholar 

  23. Luo, X., Li, Z., Yan, Q., Li, X., Tao, D., Wang, J., Leng, Y., Gardner, K., Judge, S., Li, Q., Hu, J. and Gong, J. (2010) The human WW45 protein enhances MST-1 mediated apoptosis in vivo. Int. J. Mol. Med., 23, 357–362.

    Google Scholar 

  24. Hosseinian, S., Rad, A.K., Hadjzadeh, M.A.R., Roshan, N.M., Havakhah, S. and Shafiee, S. (2016) The protective effect of Nigella sativa against cisplatin-induced nephrotoxicity in rats. Avicenna J. Phytomed., 6, 44–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bami, E., Ozakpinar, O.B., Ozdemir-Kumral, Z.N., Koroglu, K., Ercan, F., Cirakli, Z., Sekerler, T., Izzettin, F.V., Sancar, M. and Okuyan, B. (2017) Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats. Environ. Toxicol. Pharmacol., 54, 105–111.

    Article  CAS  Google Scholar 

  26. Lou, X.Y., Cheng, J.L. and Zhang, B. (2015) Therapeutic effect and mechanism of breviscapine on cisplatin-induced nephrotoxicity in mice. Asian. Pac. J. Trop. Med., 8, 873–877.

    Article  CAS  Google Scholar 

  27. Yin, X., Apostolov, E.O., Shah, S.V., Wang, X., Bogdanov, K.V., Buzder, T., Stewart, A.G. and Basnakian, A.G. (2007) Induction of renal endonuclease G by cisplatin is reduced in DNase I-deficient mice. J. Am. Soc. Nephrol., 18, 2544–2553.

    Article  CAS  Google Scholar 

  28. Basnakian, A.G., Apostolov, E.O., Yin, X., Napirei, M., Mannherz, H.G. and Shah, S.V. (2005) Cisplatin nephrotoxicity is mediated by deoxyribonuclease I. J. Am. Soc. Nephrol., 16, 697–702.

    Article  CAS  Google Scholar 

  29. Hua, Z.J. and Xu, M. (2000) DNA fragmentation in apoptosis. Cell Res., 10, 205–211.

    Article  Google Scholar 

  30. Khodarev, N.N., Sokolova, I.A. and Vaughan, A.T. (1998) Mechanisms of induction of apoptotic DNA fragmentation. Int. J. Radiat. Biol., 73, 455–467.

    Article  CAS  Google Scholar 

  31. Jang, Y.J., Won, J.H., Back, M.J., Fu, Z., Jang, J.M., Ha, H.C., Hong, S.B., Chang, M. and Kim, D.K. (2017) Paraquat induces apoptosis through a mitochondria-dependent pathway in RAW 264.7 cells. Biomol. Ther. (Seoul), 23, 407–413.

    Article  Google Scholar 

  32. Kroemer, G. and Reed, J.C. (2000) Mitochondrial control of cell death. Nat. Med., 6, 513–519.

    Article  CAS  Google Scholar 

  33. Wadia, J.S., Chalmers-Redman, R.M.E., Ju, W.J.H., Carlile, G.W., Philips, J.L., Fraser, A,D. and Tatton, W.G. (1998) Mitochondrial membrane potential and nuclear changes in apoptosis acused by serum and nerve growth factor withdrawal: time course and modification by (-)-deprenyl. J. Neurosci., 18, 932–947.

    Article  CAS  Google Scholar 

  34. Tadagavadi, R. and Reeves, W.B. (2017) Neutrophils in cisplatin AKI-mediator or marker? Kidney Int., 92, 11–13.

    Article  CAS  Google Scholar 

  35. Ma, P., Zhang, S., Su, G., Qiu, G. and Wu, Z. (2015) Protective effects of icariin on cisplatin-induced acute renal injury in mice. Am. J. Transl. Res., 7, 2105–2114.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, C.M. and Song, Y.S. (2013) Luteolin and luteolin-7-O-glucoside inhibit lipopolysaccharide-induced inflammatory responses through modulation of NF-κB/AP-1/PI3K-Akt signaling cascades in RAW 264.7 cells. Nutr. Res. Pract., 7, 423–429.

    Article  CAS  Google Scholar 

  37. Hwang, Y.J., Lee, E.J., Kim, H.R. and Hwang, K.A. (2013) Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep., 46, 611–616.

    Article  CAS  Google Scholar 

  38. Yao, H., Shang, Z., Wang, P., Li, S., Zhang, Q., Tian, H., Ren, D. and Han, X. (2016) Protection of luteolin-7-O-glu-coside against doxorubicin-induced injury through PTEN/ Akt and ERK pathway in H9c2 cells. Cardiovasc. Toxicol., 16, 101–110.

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. The first two authors contributed equally to this work.

Authors and Affiliations

  1. Tradition Korean Medicine Research Team, National Development Institute of Korean Medicine, 288, Jangheung, 59338, Korea

    Jong-Hyun Nho, Ho-Kyung Jung, Mu-Jin Lee, Ji-Hun Jang, Mi-Ok Sim, Da-Eun Jeong & Hyun-Woo Cho

  2. College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Korea

    Ho-Kyung Jung & Jong-Choon Kim

Authors
  1. Jong-Hyun Nho
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ho-Kyung Jung
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mu-Jin Lee
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Ji-Hun Jang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Mi-Ok Sim
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Da-Eun Jeong
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Hyun-Woo Cho
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Jong-Choon Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Hyun-Woo Cho or Jong-Choon Kim.

Rights and permissions

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nho, JH., Jung, HK., Lee, MJ. et al. Beneficial Effects of Cynaroside on Cisplatin-Induced Kidney Injury In Vitro and In Vivo . Toxicol Res. 34, 133–141 (2018). https://doi.org/10.5487/TR.2018.34.2.133

Download citation

  • Received: 08 November 2017

  • Revised: 12 March 2018

  • Accepted: 13 March 2018

  • Published: 01 April 2018

  • Issue Date: April 2018

  • DOI: https://doi.org/10.5487/TR.2018.34.2.133

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Cisplatin
  • Cynaroside
  • HK-2
  • Nephrotoxicity
  • MST-1
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature