Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Toxicological Research
  3. Article

Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays

  • Original Article
  • Open access
  • Published: 01 October 2016
  • Volume 32, pages 289–300, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Toxicological Research Aims and scope Submit manuscript
Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays
Download PDF
  • Luis Orlando Pérez1,
  • Rolando González-José1 &
  • Pilar Peral García2 
  • 119 Accesses

  • 11 Citations

  • Explore all metrics

Abstract

Non-genotoxic carcinogens are substances that induce tumorigenesis by non-mutagenic mechanisms and long term rodent bioassays are required to identify them. Recent studies have shown that transcription profiling can be applied to develop early identifiers for long term phenotypes. In this study, we used rat liver expression profiles from the NTP (National Toxicology Program, Research Triangle Park, USA) DrugMatrix Database to construct a gene classifier that can distinguish between non-genotoxic carcinogens and other chemicals. The model was based on short term exposure assays (3 days) and the training was limited to oxidative stressors, peroxisome proliferators and hormone modulators. Validation of the predictor was performed on independent toxicogenomic data (TG-GATEs, Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System, Osaka, Japan). To build our model we performed Random Forests together with a recursive elimination algorithm (VarSelRF). Gene set enrichment analysis was employed for functional interpretation. A total of 770 microarrays comprising 96 different compounds were analyzed and a predictor of 54 genes was built. Prediction accuracy was 0.85 in the training set, 0.87 in the test set and increased with increasing concentration in the validation set: 0.6 at low dose, 0.7 at medium doses and 0.81 at high doses. Pathway analysis revealed gene prominence of cellular respiration, energy production and lipoprotein metabolism. The biggest target of toxicogenomics is accurately predict the toxicity of unknown drugs. In this analysis, we presented a classifier that can predict non-genotoxic carcinogenicity by using short term exposure assays. In this approach, dose level is critical when evaluating chemicals at early time points.

Article PDF

Download to read the full article text

Similar content being viewed by others

A novel support vector machine-based 1-day, single-dose prediction model of genotoxic hepatocarcinogenicity in rats

Article 18 May 2024

Mechanism-Based Evaluation System for Hepato- and Nephrotoxicity or Carcinogenicity Using Omics Technology

Chapter © 2019

A novel toxicogenomics-based approach to categorize (non-)genotoxic carcinogens

Article 02 October 2014
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Abbreviations

GTX:

Genotoxic

NGTX:

Non-genotoxic

NTP:

National Toxicology Program

TG-GATE:

The Toxicogenomics Project Genomics Assisted Toxicity Evaluation system

References

  1. McGovern, T. and Jacobson-Kram, D. (2006) Regulation of genotoxic and carcinogenic impurities in drug substances and products. TrAC, Trends Anal. Chem., 25, 790–795.

    Article  CAS  Google Scholar 

  2. Hayashi, Y. (1992) Overview of genotoxic carcinogens and non-genotoxic carcinogens. Exp. Toxicol. Pathol., 44, 465–471.

    Article  CAS  Google Scholar 

  3. Hernández, L.G., van Steeg, H., Luijten, M. and van Benthem, J. (2009) Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat. Res., 682, 94–109.

    Article  Google Scholar 

  4. Robinson, J.F., Pennings, J.L. and Piersma, A.H. (2012) A review of toxicogenomic approaches in developmental toxicology. Methods Mol. Biol., 889, 347–371.

    Article  CAS  Google Scholar 

  5. National Research Council (US) Committee on Applications of Toxicogenomic Technologies to Predictive Toxicology (2007) Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment, National Academies Press (US), Washington.

    Google Scholar 

  6. Igarashi, Y. , Nakatsu, N., Yamashita, T., Ono, A., Ohno, Y., Urushidani, T. and Yamada, H. (2015) Open TG-GATEs: a large-scale toxicogenomics database. Nucleic Acids Res., 43, D921–D927.

    Article  CAS  Google Scholar 

  7. Fitzpatrick, R.B. (2008) CPDB: Carcinogenic Potency Database. Med. Ref. Serv. Q., 27, 303–311.

    Article  Google Scholar 

  8. Ganter, B., Tugendreich, S., Pearson, C.I., Ayanoglu, E., Baumhueter, S., Bostian, K.A., Brady, L., Browne, L.J., Calvin, J.T., Day, G.J., Breckenridge, N., Dunlea, S., Eynon, B.P., Furness, L.M., Ferng, J., Fielden, M.R., Fujimoto, S.Y., Gong, L., Hu, C., Idury, R., Judo, M.S., Kolaja, K.L., Lee, M.D., McSorley, C., Minor, J.M., Nair, R.V., Natsoulis, G. , Nguyen, P., Nicholson, S.M., Pham, H., Roter, A.H., Sun, D., Tan, S., Thode, S., Tolley, A.M., Vladimirova, A., Yang, J., Zhou, Z. and Jarnagin, K. (2005) Development of a large-scale chemogenomics database to improve drug candidate selection and to understand mechanisms of chemical toxicity and action. J Biotechnol., 119, 219–244.

    Article  CAS  Google Scholar 

  9. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  10. Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Statist., 29, 1165–1188.

    Article  Google Scholar 

  11. Díaz-Uriarte, R. and Alvarez de Andrés, S. (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.

    Article  Google Scholar 

  12. Breiman, L. (2001) Random forests. Mach. Learn., 45, 5–32.

    Article  Google Scholar 

  13. Efron, B. and Tibshirani, R. (1997) Improvements on cross-validation: the 632+ bootstrap method. J. Am. Stat. Assoc., 92, 548–560.

    Google Scholar 

  14. Alexa, A., Rahnenfuhrer, J. and Lengauer, T. (2006) Improved scoring of functional groups from gene expression data by decorrelating go graph structure. Bioinformatics, 22, 1600–1607.

    Article  CAS  Google Scholar 

  15. Engelberg, A. (2004) Iconix Pharmaceuticals, Inc.-removing barriers to efficient drug discovery through chemogenomics. Pharmacogenomics, 5, 741–744.

    Article  Google Scholar 

  16. Melnick, R.L., Kohn, M.C. and Portier, C.J. (1996) Implications for risk assessment of suggested non-genotoxic mechanisms of chemical carcinogenesis. Environ. Health Perspect., 104 Suppl 1, 123–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, S.N., Li, H.F., Jan, C.R. and Shen, A.Y. (1999) Inhibition of Ca2+-activated K+ current by clotrimazole in rat anterior pituitary GH3 cells. Neuropharmacology, 38, 979–989.

    Article  CAS  Google Scholar 

  18. Zhang, W., Ramamoorthy, Y., Kilicarslan, T., Nolte, H., Tyndale, R.F. and Sellers, E.M. (2002) Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab. Dispos., 30, 314–318.

    Article  CAS  Google Scholar 

  19. Gurer-Orhan, H., Orhan, H., Vermeulen, N.P. and Meerman, J.H. (2006) Screening the oxidative potential of several monoand di-halogenated biphenyls and biphenyl ethers in rat hepatocytes. Comb. Chem. High Throughput Screen., 9, 449–454.

    Article  CAS  Google Scholar 

  20. El Etreby, M.F., Graf, K.J., Giinzel, P. and Neumann, F. (1979) Evaluation of effects of sexual steroids on the hypothalamic-pituitary system of animals and man in Mechanism of toxic action on some target organs drugs and other substances. Proceedings of the european society of toxicology (Chambers, P.L. and Giinzel, P. Ed.). Springer-Verlag, Berlin Heidelberg, pp. 11–40.

    Google Scholar 

  21. Singer, C.F., Kronsteiner, N., Hudelist, G. , Marton, E., Walter, I., Kubista, M., Czerwenka, K., Schreiber, M., Seifert, M. and Kubista, E. (2003) Interleukin 1 system and sex steroid receptor expression in human breast cancer: interleukin 1alpha protein secretion is correlated with malignant phenotype. Clin. Cancer Res., 9, 4877–4883.

    CAS  PubMed  Google Scholar 

  22. van Delft, J.H., van Agen, E., van Breda, S.G., Herwijnen, M.H., Staal, Y.C. and Kleinjans, J.C. (2004) Discrimination of genotoxic from non-genotoxic carcinogens by gene expression profiling. Carcinogenesis, 25, 1265–1276. [Erratum in: 2004, 25, 2525; 2005, 26, 511].

    Article  Google Scholar 

  23. Nakayama, K., Kawano, Y. , Kawakami, Y. , Moriwaki, N., Sekijima, M., Otsuka, M., Yakabe, Y., Miyaura, H., Saito, K., Sumida, K. and Shirai, T. (2006) Differences in gene expression profiles in the liver between carcinogenic and non-carcinogenic isomers of compounds given to rats. Toxicol. Appl. Pharmacol., 217, 299–307.

    Article  CAS  Google Scholar 

  24. Fielden, M.R., Brennan, R. and Gollub, J. (2007) A gene expression biomarker provides early prediction and mechanistic assessment of hepatic tumor induction by non-genotoxic chemicals. Toxicol. Sci., 99, 90–100.

    Article  CAS  Google Scholar 

  25. Ellinger-Ziegelbauer, H., Gmuender, H., Bandenburg, A. and Ahr, H.J. (2008) Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of shortterm in vivo studies. Mutat. Res., 637, 23–39.

    Article  CAS  Google Scholar 

  26. Auerbach, S.S., Shah, R.R., Mav, D., Smit, C.S., Walker, N.J., Vallant, M.K., Boorman, G.A. and Irwin, R.D. (2010) Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning. Toxicol. Appl. Pharmacol., 243, 300–314.

    Article  CAS  Google Scholar 

  27. Uehara, T., Minowa, Y. , Morikawa, Y. , Kondo, C., Maruyama, T., Kato, I., Nakatsu, N., Igarashi, Y. , Ono, A., Hayashi, H., Mitsumori, K., Yamada, H., Ohno, Y. and Urushidani, T. (2011) Prediction model of potential hepatocarcinogenicity of rat hepatocarcinogens using a large-scale toxicogenomics database. Toxicol. Appl. Pharmacol., 255, 297–306.

    Article  CAS  Google Scholar 

  28. Lee, S.J., Yum, Y.N., Kim, S.C., Kim, Y. , Lim, J., Lee, W.J., Koo, K.H., Kim, J.H., Kim, J.E., Lee, W.S., Sohn, S., Park, S.N., Park, J.H., Lee, J. and Kwon, S.W. (2013) Distinguishing between genotoxic and non-genotoxic hepatocarcinogens by gene expression profiling and bioinformatics pathway analysis. Sci. Rep., 3, 2783.

    Article  Google Scholar 

  29. Gusenleitner, D., Auerbach, S.S., Melia, T., Gómez, H.F., Sherr, D.H. and Monti, S. (2014) Genomic models of shortterm exposure accurately predict long-term chemical carcinogenicity and identify putative mechanisms of action. PLoS ONE, 9, e102579.

    Article  Google Scholar 

  30. He, L., Vasiliou, K. and Nebert, D.W. (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genomics, 3, 195–206.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), Centro Nacional Patagónico (CENPAT), Boulevard Brown 2915, Puerto Madryn, Provincia de Chubut, PC 9120, Argentina

    Luis Orlando Pérez & Rolando González-José

  2. Instituto de Genética Veterinaria “Fernando Noel Dulout”-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Calle 60 y 118 S/N, La Plata, Provincia de Buenos Aires, PC 1900, Argentina

    Pilar Peral García

Authors
  1. Luis Orlando Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rolando González-José
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Pilar Peral García
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Luis Orlando Pérez.

Electronic supplementary material

Supplementary material, approximately 228 KB.

Rights and permissions

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://doi.org/creativecommons.org/licenses/by/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez, L.O., González-José, R. & García, P.P. Prediction of Non-Genotoxic Carcinogenicity Based on Genetic Profiles of Short Term Exposure Assays. Toxicol Res. 32, 289–300 (2016). https://doi.org/10.5487/TR.2016.32.4.289

Download citation

  • Received: 21 March 2016

  • Accepted: 22 June 2016

  • Published: 01 October 2016

  • Issue Date: October 2016

  • DOI: https://doi.org/10.5487/TR.2016.32.4.289

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Toxicogenomics
  • Non-genotoxic carcinogen
  • Random forest
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2024 Springer Nature