Compactness in Banach space theory —selected problems

  • Antonio Avilés
  • Ondřej F. K. Kalenda


We list a number of problems in several topics related to compactness in nonseparable Banach spaces. Namely, about the Hilbertian ball in its weak topology, spaces of continuous functions on Eberlein compacta, WCG Banach spaces, Valdivia compacta and Radon-Nikodým compacta.


Hilbertian ball euclidean ball Eberlein compact uniform Eberlein compact discontinuous norms weakly compactly generated space Valdivia compact Radon-Nikodym compact 

Mathematics Subject Classifications

46B26 54D30 

Compacidad en espacios de Banach —problemas escogidos


Enumeramos una serie de problemas en diferentes temas relacionados con compacidad en espacios de Banach no separables. Concretamente, sobra la bola euclídea en su topología débil, espacios de funciones continuas en compactos de Eberlein, espacios de Banach débilmente compactamente generados, compactos de Valdivia y compactos de Radon-Nikodým.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Argyros, S. A. and Arvanitakis, A. D., (2004). Regular averaging and regular extension operators in weakly compact subsets of Hilbert spaces, Serdica Math. J., 30, 4, 527–54.MATHMathSciNetGoogle Scholar
  2. [2]
    Arvanitakis, A. D., (2002). Some remarks on Radon-Nikodým compact spaces, Fund. Math., 172, 1, 41–60. DOI: 10.4064/fm172-1-4MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Arvanitakis, A. D. and Avilés, A., (2009). Some examples of continuous images of Radon-Nikodym compact spaces, Czechoslovak Math. J., 59, 4, 1027–1038. DOI: 10.1007/s10587-009-0072-9CrossRefMathSciNetGoogle Scholar
  4. [4]
    Avilś, A., (2005). Radon-Nikodym compacts spaces of low weight and Banach spaces, Studia Math., 166, 1, 71–82. DOI: 10.4064/sm166-1-5CrossRefMathSciNetGoogle Scholar
  5. [5]
    Avilés, A. (2007). The unit ball of the Hilbert space in its weak topology, Proc. Amer. Math. Soc., 135, 3, 833–836.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Avilés, A. (2005). Countable products of spaces of finite sets, Fund. Math., 186, 2, 147–159. DOI: 10.4064/fm186-2-3MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Avilés, A., (2007). Linearly-ordered Radon-Nikodým compact spaces, Topology Appl., 154, 2, 404–409. DOI: 10.1016/j.topol.2006.05.004MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Avilés, A., (2009). Compact spaces that do not map onto finite products, Fund. Math., 202, 1, 81–96. DOI: 10.4064/fm202-1-4MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Avilés, A. and Kalenda, O. F. K., (2009). Fiber orders and compact spaces of uncountable weight, Fund. Math., 204, 1, 7–38. DOI: 10.4064/fm204-1-2MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Bell, M., (1996). A Ramsey theorem for polyadic spaces, Fund. Math., 150, 2, 189–195.MATHMathSciNetGoogle Scholar
  11. [11]
    Benyamini, Y.; Rudin, M. E. and Wage, M., (1977). Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math., 70, 309–324.MATHMathSciNetGoogle Scholar
  12. [12]
    Dijkstra, J. J. and Van Mill, J., (2002). Topological equivalence of discontinuous norms, Israel J. Math., 128, 177–196. DOI: 10.1007/BF02785423MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Ditor, S. Z., (1973). Averaging operators in C(S) and lower semicontinuous sections of continuous maps, Trans. Amer. Math. Soc., 175, 195–208. DOI: 10.2307/1996077MATHMathSciNetGoogle Scholar
  14. [14]
    Fabian, M., (1997). Gâteaux differentiability of convex functions and topology. Weak Asplund spaces, Canadian Mathematical Society, Series of Monographs and Advanced Texts. Wiley-Interscience.Google Scholar
  15. [15]
    Fabian, M., (2006). Overclasses of the class of Radon-Nikodým compact spaces, in Methods in Banach space theory. Proceedings of the V conference on Banach spaces, Cáceres, Spain, September 13-18, 2004. J. M. F. Castillo and W. B. Johnson, editors, Cambridge: Cambridge University Press. London Mathematical Society Lecture Note Series 337, 197–214.Google Scholar
  16. [16]
    Fabian, M.; Heisler, M. and Matoušková, E., (1998). Remarks on continuous images of Radon-Nikodým compacta, Comment. Math. Univ. Carolin., 39, 1, 59–69.MATHMathSciNetGoogle Scholar
  17. [17]
    Fabian, M.; Montesinos, V. and Zizler, V., (2007). Weak compactness and σ-Asplund generated Banach spaces, Studia Math., 181, 2, 125–152. DOI: 10.4064/sm181-2-2MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Fabian, M.; Montesinos, V. and Zizler, V., (2004). A characterization of subspaces of weakly compactly generated Banach spaces, J. Lond. Math. Soc. (2), 69, 457–464. DOI: 10.1112/S0024610703005118MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Hájek, P.; Montesinos, V.; Vanderwerff, J. and Zizler, V., (2007). Biorthogonal systems in Banach spaces, CMS Books in Mathematics. Canadian Mathematical Society, Springer Verlag.Google Scholar
  20. [20]
    Kalenda, O., (2000). Valdivia compact spaces in topology and Banach space theory, Extracta Math., 15, 1, 1–85.MATHMathSciNetGoogle Scholar
  21. [21]
    Kalenda, O., (2001). Valdivia Compacta and Biduals of Asplund spaces, in General topology and Banach spaces, T. Banakh ed., (Nova Sci. Publ., Huntington, New York), 115–125.Google Scholar
  22. [22]
    Kalenda, O., (2004). Classes of compact spaces in functional analysis, Habilitation Thesis, Charles University Prague, Faculty of Mathematics and Physics.Google Scholar
  23. [23]
    Kalenda, O., (2005). Complex Banach spaces with Valdivia dual unit ball, Extracta Math., 20, 3, 243–259.MATHMathSciNetGoogle Scholar
  24. [24]
    Kalenda, O., (2008). On products with the unit interval, Topology Appl., 155, 10, 1098–1104. DOI: 10.1016/ j.topol.2008.01.010MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Kalenda, O., (2008). Natural examples of Valdivia compact spaces, J. Math. Anal. Appl., 340, 1, 81–101. DOI: 10.1016/j.jmaa.2007.07.069MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Kalenda, O. and Kubiś, W., (2010). The structure of Valdivia compact lines, Topology Appl., 157, 7, 1142–1151. DOI: 10.1016/j.topol.2010.02.001MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Koszmider, P., (2004). Banach spaces of continuous functions with few operators, Math. Ann., 330, 1, 151–183. DOI: 10.1007/s00208-004-0544-zMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Kubiś, W., (2006). Compact spaces generated by retractions, Topology Appl., 153, 18, 3383–3396. DOI: 10.1016 /j.topol.2006.02.002MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Kubiś, W., (2009). Banach spaces with projectional skeletons, J. Math. Anal. Appl., 350, 2, 758–776. DOI: 10.1016/j.jmaa.2008.07.006MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Kubiś, W. and Michalewski, H., (2006). Small Valdivia compact spaces, Topology Appl., 153, 14, 2560–2573. DOI: 10.1016/j.topol.2005.09.010MATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Matoušková, E. and Stegall, C., (2001), Compact spaces with a finer metric topology and Banach spaces, in General topology in Banach spaces, Nova Sci. Publ., Huntington, NY, 81–101.Google Scholar
  32. [32]
    Namioka, I., (1987). Radon-Nikodým compact spaces and fragmentability, Mathematika, 34, 2, 258–281. DOI: 10.1112/S0025579300013504MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Namioka, I., (2001–2002). On generalizations of Radon-Nikodým compact spaces, Topology Proceedings, 26, 741–750.MathSciNetGoogle Scholar
  34. [34]
    Orihuela, J.; Schachermayer, W. and Valdivia, M., (1991). Every Radon-Nikodym Corson compact space is Eberlein compact, Studia Math., 98, 157–174.MATHMathSciNetGoogle Scholar
  35. [35]
    Orihuela, J. and Valdivia, M., (1990). Projective generators and resolutions of identity in Banach spaces, Rev. Mat. Complut., Madrid 2. Suppl. Issue, 179–199.MathSciNetGoogle Scholar
  36. [36]
    Pelczyński, A., (1968). Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Diss. Math., 58, 92 p.Google Scholar
  37. [37]
    Rosenthal, H. P., (1974). The heredity problem for weakly compactly generated Banach spaces, Compositio Math., 28, 83–111.MATHMathSciNetGoogle Scholar
  38. [38]
    Stegall, C., (1994). Spaces of Lipschitz functions on Banach spaces, in Functional Analysis, (Essen, 1991), Lecture Notes in Pure and Appl. Math., 150, Dekker, New York, 1994, 265–278.Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Departamento de MatemáticasUniversidad de MurciaMurciaSpain
  2. 2.Department of Mathematical Analysis Faculty of Mathematics and PhysicCharles UniversityPraha 8Czech Republic

Personalised recommendations