Alken, P. and S. Maus, Electric fields in the equatorial ionosphere derived from CHAMP satellite magnetic field measurements, J. Atmos. Sol. Terr. Phys., 72, 319–326, doi:10.1016/j.jastp.2009.02.006, 2010a.
Article
Google Scholar
Alken, P. and S. Maus, Relationship between the ionospheric eastward electric field and the equatorial electrojet, Geophys. Res. Lett., 37, L04104, doi:10.1029/2009GL041989, 2010b.
Article
Google Scholar
Alken, P., S. Maus, J. Emmert, and D. P. Drob, Improved horizontal wind model HWM07 enables estimation of equatorial ionospheric electric fields from satellite magnetic measurements, Geophys. Res. Lett., 35, L11105, doi:10.1029/2008GL033580, 2008.
Article
Google Scholar
Alken, P., A. Chulliat, and S. Maus, Longitudinal and seasonal structure of the ionospheric equatorial electric field, J. Geophys. Res., 118, doi:10.1029/2012JA018314, 2013.
Anderson, D. N., Modeling the ambient, low latitude F-region ionosphere—a review, J. Atmos. Terr. Phys., 43(8), 753–762, 1981.
Article
Google Scholar
Anderson, D., A. Anghel, J. Chau, and O. Veliz, Daytime vertical E × B drift velocities inferred from gound-based magnetometer observations at low latitudes, Space Weather, 2, S11001, doi:10.1029/2004SW000095, 2004.
Article
Google Scholar
Araujo-Pradere, E. A., D. N. Anderson, and M. Fedrizzi, Communications/Navigation Outage Forecasting System observational support for the equatorial E × B drift velocities associated with the four-cell tidal structures, Radio Sci., 46, RS0D09, doi:10.1029/2010RS004557, 2011.
Article
Google Scholar
Bilitza, D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell, The International Reference Ionosphere (IRI) today and in the future, J. Geod., 85, 909–920, doi:10.1007/s00190-010-0427-x, 2011.
Article
Google Scholar
Chau, J. L. and E. Kudeki, Statistics of 150-km echoes over Jicamarca based on low-power VHF observations, Ann. Geophys., 24, 1305–1310, 2006.
Article
Google Scholar
Chau, J. L. and R. F. Woodman, Daytime vertical and zonal velocities from 150-km echoes: Their relevance to F-region dynamics, Geophys. Res. Lett., 31, L17801, doi:10.1029/2004GL020800, 2004.
Google Scholar
Chulliat, A., P. Vigneron, E. Thébault, O. Sirol, and G. Hulot, Swarm SCARF Dedicated Ionospheric Field Inversion chain, Earth Planets Space, 65, this issue, 1271–1283, 2013.
Article
Google Scholar
de la Beaujardière, O. and the C/NOFS Science Definition Team, C/NOFS: A mission to forecast scintillations, J. Atmos. Sol. Terr. Phys., 66(17), 1573–1591, doi:10.1016/j.jastp.2004.07.030, 2004.
Article
Google Scholar
Drob, D. P. et al., An empirical model of the Earth’s horizontal wind fields: HWM07, J. Geophys. Res., 113, A12304, doi:10.1029/2008JA013668, 2008.
Article
Google Scholar
Emmert, J. T., D. P. Drob, G. G. Shepherd, G. Hernandez, M. J. Jarvis, J. W. Meriwether, R. J. Niciejewski, D. P. Sipler, and C. A. Tepley, DWM07 global empirical model of upper thermospheric |storm-induced disturbance winds, J. Geophys. Res., 113, A11319, doi:10.1029/2008JA013541, 2008.
Article
Google Scholar
Fambitakoye, O., P. N. Mayaud, and A. D. Richmond, The equatorial electrojet and regular daily variation S
R
:-III. Comparison of observations with a physical model, J. Atmos. Terr. Phys., 38, 113–121, 1976.
Article
Google Scholar
Fang, T. W., A. D. Richmond, J. Y. Liu, A. Maute, C. H. Lin, C. H. Chen, and B. Harper, Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors, J. Atmos. Sol. Terr. Phys., 70, 2203–2211, 2008.
Article
Google Scholar
Fejer, B. G., J. W. Jensen, and S.-Y. Su, Quiet-time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res., 113, A05304, doi:10.1029/2007JA012801, 2008.
Google Scholar
Forbes, J. M., The equatorial electrojet, Rev. Geophys. Space Phys., 19(3), 469–504, 1981.
Article
Google Scholar
Friis-Christensen, E., H. Lühr, and G. Hulot, Swarm: A constellation to study the Earth’s magnetic field, Earth Planets Space, 58, 351–358, 2006.
Article
Google Scholar
Friis-Christensen, E., H. Lühr, G. Hulot, R. Haagmans, and M. Purucker, Geomagnetic research from space, Eos, 90, 213–214, 2009.
Article
Google Scholar
Gagnepain, J., M. Crochet, and A. D. Richmond, Comparison of equatorial electrojet models, J. Atmos. Terr. Phys., 39, 1119–1124, 1977.
Article
Google Scholar
Heelis, R. A., Electrodynamics in the low and middle latitude ionosphere: A tutorial, J. Atmos. Sol. Terr. Phys., 66, 825–38, 2004.
Article
Google Scholar
Hysell, D. L., M. F. Larsen, and R. F. Woodman, JULIA radar studies of electric fields in the equatorial electrojet, Geophys. Res. Lett., 24(13), 1687–90, 1997.
Article
Google Scholar
Kelley, M. C, The Earth’s Ionosphere: Plasma Physics and Electrodynamics, Academic Press Inc, San Diego, 1989.
Google Scholar
Leger, J.-M., F. Bertrand, T. Jager, M. Le Prado, I. Fratter, and J.-C. Lalaurie, Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping, Procedia Chemistry, 1(1), 634–637, 2009, ISSN 1876–6196, doi:10.1016/j.proche.2009.07.158, Proceedings of the Eurosensors XXIII conference.
Lühr, H., S. Maus, and M. Rother, Noon-time equatorial electrojet: Its spatial features as determined by the CHAMP satellite, J. Geophys. Res., 109, A01306, doi:10.1029/2002JA009656, 2004.
Google Scholar
Maus, S., M. Rother, C. Stolle, W Mai, S. Choi, H. Lühr, D. Cooke, and C. Roth, Third generation of the Potsdam Magnetic Model of the Earth (POMME), Geochem. Geophys. Geosyst., 7, doi:10.1029/2006GC001269, 2006.
Olsen, N., E. Friis-Christensen, R. Floberghagen, P. Alken, C. D Beggan, A. Chulliat, E. Doornbos, J. T. da Encarnação, B. Hamilton, G. Hulot, J. van den IJssel, A. Kuvshinov, V. Lesur, H. Lühr, S. Macmillan, S. Maus, M. Noja, P. E. H. Olsen, J. Park, G. Plank, C. Püthe, J. Rauberg, P. Ritter, M. Rother, T. J. Sabaka, R. Schachtschneider, O. Sirol, C. Stolle, E. Thébault, A. W. P. Thomson, L. Tøffner-Clausen, J. Veí?mský, P. Vigneron, and P. N. Visser, The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm data products, Earth Planets Space, 65, this issue, 1189–1200, 2013.
Article
Google Scholar
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107, doi:10.1029/2002JA009430, 2002.
Reigber, C, H. Lühr, and P. Schwintzer, First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, Springer, 2003.
Richmond, A. D., Equatorial electrojet—I. Development of a model including winds and electric field, J. Atmos. Terr. Phys., 35, 1083–1103, 1973.
Article
Google Scholar
Richmond, A. D., Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoelectr, 47, 191–212, 1995.
Article
Google Scholar
Ronchi, C., R. N. Sudan, and P. L. Similon, Effect of short-scale turbulence on kilometer wavelength irregularities in the equatorial electrojet, J. Geophys. Res., 95(A1), 189–200, 1990.
Article
Google Scholar
Ronchi, C, R. N. Sudan, and D. T. Farley, Numerical simulations of large-scale plasma turbulence in the daytime equatorial electrojet, J. Geophys. Res., 96(A12), 21,263–21,279, 1991.
Article
Google Scholar
Rother, M., V. Lesur, and R. Schachtschneider, An algorithm for deriving core magnetic field models from the Swarm data set, Earth Planets Space, 65, this issue, 1223–1231, 2013.
Article
Google Scholar
Russell, C. T., Geophysical coordinate transformations, Cosmic Electrodynamics, 2, 1971.
Sabaka, T. J., L. Tøffner-Clausen, and N. Olsen, Use of the Comprehensive Inversion method for Swarm satellite data analysis, Earth Planets Space, 65, this issue, 1201–1222, 2013.
Article
Google Scholar
Sugiura, M. and D. J. Poros, An improved model equatorial electrojet with a meridional current system, J. Geophys. Res., 74, 4025–4034, 1969.
Article
Google Scholar
Thébault, E., P. Vigneron, S. Maus, A. Chulliat, O. Sirol, and G. Hulot, Swarm SCARF Dedicated Lithospheric Field Inversion chain, Earth Planets Space, 65, this issue, 1257–1270, 2013.
Article
Google Scholar