Skip to main content

Advertisement

Log in

The basic science of peri-implant bone healing

  • Review Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Given the popularity of cementless orthopedic implants, it is imperative for orthopedic surgeons to have a basic understanding of the process of peri-implant bone healing. Contact and distance osteogenesis have been used to explain peri-implant bone healing. In contact osteogenesis, de novo bone forms on the implant surface, while in distance osteogenesis, the bone grows from the old bone surface toward the implant surface in an appositional manner. Contact osteogenesis may lead to bone bonding if the surface of the implant displays the appropriate surface topography. The early stage of peri-implant bone healing is very important and involves the body’s initial response to a foreign material: protein adsorption, platelet activation, coagulation, and inflammation. This results in the formation of a stable fibrin clot that is a depot for growth factors and allows for osteoconduction. Osteoconduction is the migration and differentiation of osteogenic cells, such as pericytes, into osteoblasts. Osteoconduction allows for contact osteogenesis to occur at the implant surface. The late stage of healing involves the remodeling of this woven bone. In many respects, this process is similar to the bone healing occurring at a fracture site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charnley J. Arthroplasty of the hip: A new operation. Lancet 1961;1:1129–32.

    Article  CAS  PubMed  Google Scholar 

  2. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007;28:5058–67.

    Article  CAS  PubMed  Google Scholar 

  3. Marco F, Milena F, Gianluca G, Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron 2005;36:630–44.

    Article  CAS  PubMed  Google Scholar 

  4. Cameron HU, Pilliar RM, MacNab I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res 1973;7:301–11.

    Article  CAS  PubMed  Google Scholar 

  5. Franchi M, Fini M, Martini D, Orsini E, Leonardi L, Ruggeri A, et al. Biological fixation of endosseous implants. Micron 2005;36:665–71.

    Article  CAS  PubMed  Google Scholar 

  6. Cullinane DM, Fredrick A, Eisenberg SR, Pacicca D, Elman MV, Lee C, et al. Induction of a neoarthrosis by precisely controlled motion in an experimental mid-femoral defect. J Orthop Res 2002;20:579–86.

    Article  PubMed  Google Scholar 

  7. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003;88:873–84.

    Article  CAS  PubMed  Google Scholar 

  8. Le AX, Miclau T, Hu D, Helms JA. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 2001;19:78–84.

    Article  CAS  PubMed  Google Scholar 

  9. Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone in growth into porous-surfaced implants. Clin Orthop Relat Res 1986;208:108–13.

    Google Scholar 

  10. Goodman S, Aspenberg P. Effects of mechanical stimulation on the differentiation of hard tissues. Biomaterials 1993;14:563–9.

    Article  CAS  PubMed  Google Scholar 

  11. Futami T, Fujii N, Ohnishi H, Taguchi N, Kusakari H, Ohshima H, et al. Response to titanium implants in the rat maxilla: Ultrastructural and histochemical observations of the bone-titanium interface. J Periodontology 2000;71:287–98.

    Article  CAS  Google Scholar 

  12. Grübl A, Chiari C, Gruber M, Kaider A, Gottsauner-Wolf F. Cementless total hip arthroplasty with a tapered, rectangular titanium stem and a threaded cup: A minimum ten-year follow-up. J Bone Joint Surg Am 2002;84:425–31.

    Article  PubMed  Google Scholar 

  13. Grübl A, Chiari C, Giurea A, Gruber M, Kaider A, Marker M, et al. Cementless total hip arthroplasty with the rectangular titanium Zweymuller stem: A concise follow-up, at a minimum of fifteen years, of a previous report. J Bone Joint Surg Am 2006;88:2210–5.

    PubMed  Google Scholar 

  14. Pospischill M, Knahr K. Cementless total hip arthroplasty using a threaded cup and a rectangular tapered stem: Follow-up for ten to 17 years. J Bone Joint Surg Br 2005; 87-B:1210–5.

    Article  Google Scholar 

  15. Puleo DA, Nanci A. Understanding and controlling the bone implant interface. Biomaterials 1999;20:2311–21.

    Article  CAS  PubMed  Google Scholar 

  16. Ratner BD. New ideas in biomaterials science: A path to engineered biomaterials. J Biomed Mater Res 1993;27:837–50.

    Article  CAS  PubMed  Google Scholar 

  17. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med 1996;7:329–45.

    Article  CAS  PubMed  Google Scholar 

  18. Kanagaraja S, Lundström I, Nygren H, Tengvall P. Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood. Biomaterials 1996;17:2225–32.

    Article  CAS  PubMed  Google Scholar 

  19. Gorbet MB, Sefton MV. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004;25:5681–703.

    Article  CAS  PubMed  Google Scholar 

  20. Hanson SR. Blood coagulation and blood-material interations. In: Ratner BD, Hoffman A, Schoen F, Lemons J, editors. Biomaterials Science. 2nd ed. San Diego, CA: Academic Press; 2005. p. 332–8.

    Google Scholar 

  21. Davies JE, Hosseini MM. Histodynamics of endosseous wound healing, In: Davies JE, editor. Bone Engineering. Toronto, ON: Em squared inc; 2000. p. 1–14.

    Google Scholar 

  22. Anderson JM. Blood Inflammation, wound healing and foreign body response. In: Ratner BD, Hoffman A, Schoen F, Lemons J, editors. Biomaterials Science. 2nd ed. San Diego, CA: Academic Press; 2005. p. 296–304.

    Google Scholar 

  23. Spisani S, Giuliani AL, Cavalletti T, Zaccarini M, Milani L, Gavioli R, et al. Modulation of neutrophil functions by activated platelet release factors. Inflammation 1992;16:147–58.

    Article  CAS  PubMed  Google Scholar 

  24. Ammon C, Kreutz M, Rehli M, Krause SW, Andreesen R. Platelets induce monocyte differentiation in serum-free coculture. J Leukoc Biol 1998;63:469–76.

    Article  CAS  PubMed  Google Scholar 

  25. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 2009;15:757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kikuchi L, Park JY, Victor C, Davies JE. Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials 2005;26:5285–95.

    Article  CAS  PubMed  Google Scholar 

  27. Gruber R, Karreth F, Kandler B, Fuerst G, Rot A, Fischer MB, et al. Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions. Platelets 2004;15:29–35.

    Article  CAS  PubMed  Google Scholar 

  28. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932–49.

    PubMed  Google Scholar 

  29. Bazzoni G, Dejana E, Del Maschio A. Platelet-dependent modulation of neutrophil function. Pharmacol Res 1992;26:269–972.

    Article  CAS  PubMed  Google Scholar 

  30. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Cruceta J, Graves BD, et al. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs 2001;169:285–94.

    Article  CAS  PubMed  Google Scholar 

  31. Einhorn TA. The science of fracture healing. J Orthop Trauma 2005;19:S4–6.

    Article  PubMed  Google Scholar 

  32. De Long WG Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, et al. Bone grafts and bone graft substitutes in orthopedic trauma surgery. A critical analysis. J Bone Joint Surg Am 2007;89:649–58.

    Article  PubMed  Google Scholar 

  33. Sumner DR, Turner TM, Purchio AF, Gombotz WR, Urban RM, Galante JO. Enhancement of bone ingrowth by transforming growth factor-beta. J Bone Joint Surg Am 1995;77:1135–47.

    Article  CAS  PubMed  Google Scholar 

  34. Lin M, Overgaard S, Glerup H, Søballe K, Bünger C. Transforming growth factor-beta1 adsorbed to tricalciumphosphate coated implants increases peri-implant bone remodeling. Biomaterials 2001;22:189–93.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Y, Huse RO, de Groot K, Buser D, Hunziker EB. Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res 2007;86:84–9.

    Article  CAS  PubMed  Google Scholar 

  36. Park J, Lutz R, Felszeghy E, Wiltfang J, Nkenke E, Neukam FW, et al. The effect on bone regeneration of a liposomal vector to deliver BMP-2 gene to bone grafts in peri-implant bone defects. Biomaterials 2007;28:2772–82.

    Article  CAS  PubMed  Google Scholar 

  37. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nature Med 2000;6:389–95.

    Article  CAS  PubMed  Google Scholar 

  38. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4–25.

    Article  CAS  PubMed  Google Scholar 

  39. Fischbach C, Mooney DJ. Polymeric systems for bioinspired delivery of angiogenic molecules. In: Abe A, Albertsson A, Duncan R, Dusek K, de Jeu W, Joanny J, et al., editors. Advances in Polymer Science. Vol. 203. Berlin, Heidelberg: Springer; 2006. p. 191–221.

    Article  CAS  Google Scholar 

  40. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS,et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301–13.

    Article  CAS  PubMed  Google Scholar 

  41. Meyer U, Joos U, Mythili J, Stamm T, Hohoff A, Fillies T, et al. Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 2004;25:1959–67.

    Article  CAS  PubMed  Google Scholar 

  42. Davies JE, Chernecky R, Lowenberg B, Shiga A. Deposition and resorption of calcified matrix in vitro by rat bone marrow cells. Cells Mater 1991;1:3–15.

    Google Scholar 

  43. Davies JE, Nagai N, Takeshita N, Smith DC. Deposition of cement-like matrix on implant materials. In: Davies JE, editor. The Bone-Biomaterial Interface. Toronto: University of Toronto Press, 1991. p. 285–94.

    Chapter  Google Scholar 

  44. Davies JE. In vitro modeling of the bone/implant interface. Anat Rec 1996;245:426–45.

    Article  CAS  PubMed  Google Scholar 

  45. Listgarten MA. Soft and hard tissue response to endosseous dental implants. Anat Rec 1996;245:410–25.

    Article  CAS  PubMed  Google Scholar 

  46. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: A review of the literature. Int J Oral Maxillofac Implants 2005;20:425–31.

    PubMed  Google Scholar 

  47. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ 2003;67:932–49.

    PubMed  Google Scholar 

  48. Pilliar RM. Cementless implant fixation-toward improved reliability. Orthop Clin North Am 2005;36:113–9.

    Article  PubMed  Google Scholar 

  49. Edwards JT, Brunski JB, Higuchi HW. Mechanical and morphologic investigation of the tensile strength of a bone-hydroxyapatite interface. J Biomed Mater Res 1997;36:454–68.

    Article  CAS  PubMed  Google Scholar 

  50. Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res 1999;13:99–119.

    Article  CAS  PubMed  Google Scholar 

  51. Frost HM. The Utah paradigm of skeletal physiology: An overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab 2000;18:305–16.

    Article  CAS  PubMed  Google Scholar 

  52. Currey JD. The many adaptations of bone. J Biomech 2003;36:1487–95.

    Article  CAS  PubMed  Google Scholar 

  53. Brånemark R, Ohrnell LO, Nilsson P, Thomsen P. Biomechanical characterization of osseointegration during healing: An experimental in vivo study in the rat. Biomaterials 1997;18:969–78.

    Article  PubMed  Google Scholar 

  54. Wolff JL. The Law of Bone Remodelling. In: Maquet P, Furlong R, Translator. Berlin, Heidelberg: Springer; 1986.

    Google Scholar 

  55. Glassman AH, Bobyn JD, Tanzer M. New femoral designs: Do they influence stress shielding? Clin Orthop Relat Res 2006;453:64–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. T. Kuzyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzyk, P.R.T., Schemitsch, E.H. The basic science of peri-implant bone healing. IJOO 45, 108–115 (2011). https://doi.org/10.4103/0019-5413.77129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.77129

Key words

Navigation