Skip to main content

Advertisement

Log in

Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

Abstract

Background

Bone grafts are required to fill a cavity created after curettage of benign lytic lesions of the bone. To avoid the problems associated at donor site with autologous bone graft, we require allograft or bone graft substitutes. We evaluated the healing of lytic lesions after hydroxyapatite (HA) grafting by serial radiographs.

Materials and Methods

Forty cases of benign lytic lesions of bone were managed by simple curettage and grafting using HA blocks. Commercially available HA of bovine origin (Surgiwear Ltd., Shahjahanpur, India) was used for this purpose. Mean duration of followup was 34.8 months (range 12–84 months). Mean patient age was 19.05 years (range 3–55 years). Radiological staging of graft incorporation was done as per criteria of Irwin et al. 2001.

Results

In our series, two cases were in stage I. A total of 11 cases were in stage II and 27 were in stage III. Graft incorporation was radiologically complete by 15 months. Clinical recovery was observed before radiological healing. The average time taken to return to preoperative function was 3 months. Recurrence was observed in giant cell tumor (n = 3) and chondromyxoid fibroma (n = 1). There was no incidence of graft rejection, collapse, growth plate disturbances or antigenic response.

Conclusions

We conclude that calcium HA is biologically acceptable bone graft substitute in the management of benign lytic lesions of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greis PE, Hankin FM. Eosinophilic granuloma. The management of solitary lesions of bone. Clin Orthop Relat Res 1990;257:204–11.

    Google Scholar 

  2. Mendenhall WM, Zlotecki RA, Scarborough MT, Gibbs CP, Mendenhall NP. Giant cell tumor of bone. Am J Clin Oncol 2006;29:96–9.

    Article  PubMed  Google Scholar 

  3. Sponer P, Urban K. Treatment of juvenile bone cysts by curettage and filling of the cavity with BAS-0 bioactive glass-ceramic material. Acta Chir Orthop Traumatol Cech 2004;71:214–9.

    CAS  PubMed  Google Scholar 

  4. Van Heest A, Swiontkowski M. Bone-graft substitutes. Lancet 1999;353 Suppl 1:SI28–9.

    Article  PubMed  Google Scholar 

  5. Keating JF, McQueen MM. Substitutes for autologous bone graft in orthopaedic trauma. J Bone Joint Surg Br 2001;83:3–8.

    Article  CAS  PubMed  Google Scholar 

  6. Inoue O, Ibaraki K, Shimabukuro H, Shingaki Y. Packing with high-porosity hydroxyapatite cubes alone for the treatment of simple bone cyst. Clin Orthop Relat Res 1993;293:287–92.

    Google Scholar 

  7. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma 1989;3:192–5.

    Article  CAS  PubMed  Google Scholar 

  8. Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K. The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg Br 1990;72:298–302.

    Article  CAS  PubMed  Google Scholar 

  9. Dreesman H. Uber knochenplombierung. Beitr Klin Chir 1892;9:804–10.

    Google Scholar 

  10. Peltier LF, Jones RH. Treatment of unicameral bone cysts by curettage and packing with plaster-of-Paris pellets. J Bone Joint Surg Am 1978;60:820–2.

    Article  CAS  PubMed  Google Scholar 

  11. Nicholson NC, Ramp WK, Kneisl JS, Kaysinger KK. Hydrogen peroxide inhibits giant cell tumor and osteoblast metabolism in vitro. Clin Orthop Relat Res 1998;347:250–60.

    Article  Google Scholar 

  12. Rock M. Adjuvant management of benign tumors; basic concepts of phenol and cement use. Chir Organi Mov 1990;75:195–7.

    CAS  PubMed  Google Scholar 

  13. Lane JM. Liquid nitrogen as an adjunct. Chir Organi Mov 1990;75 Suppl 1:S198–9.

    Google Scholar 

  14. Irwin RB, Bernhard M, Biddinger A. Coralline hydroxyapatite as bone substitute in orthopedic oncology. Am J Orthop (Belle Mead NJ) 2001;30:544–50.

    CAS  Google Scholar 

  15. Yamamoto T, Onga T, Marui T, Mizuno K. Use of hydroxyapatite to fill cavities after excision of benign bone tumours. Clinical results. J Bone Joint Surg Br 2000;82:1117–20.

    Article  CAS  PubMed  Google Scholar 

  16. Reddy R, Swamy M. The use of hydroxyapatite as a bone graft substitute in orthopaedic conditions. Indian J Orthop 2005;39:52–4.

    Google Scholar 

  17. Schindler OS, Cannon SR, Briggs TW, Blunn GW. Composite ceramic bone graft substitute in the treatment of locally aggressive benign bone tumours. J Orthop Surg (Hong Kong) 2008;16:66–74.

    Article  CAS  Google Scholar 

  18. Saikia KC, Bhattacharya TD, Bhuyan SK, Talukdar DJ, Saikia SP, Jitesh P. Calcium phosphate ceramics as bone graft substitutes in filling bone tumor defects. Indian J Orthop 2008;42:169–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Natarajan M, Dhanapal R, Kumaravel S, Selvaraj R, Uvaraj NR. The use of bovine calcium hydroxyapatite in filling defects following curettage of benign bone tumours. Indian J Orthop 2003;37:192–4.

    Google Scholar 

  20. Agarwala S, Bhagwat A. Hydroxyapatite as a bone graft substitute: Use in cortical and cancellous bone. Indian J Orthop 2005;39:254–6.

    Article  Google Scholar 

  21. Agrillo U, Mastronardi L, Puzzilli F. Anterior cervical fusion with carbon fiber cage containing coralline hydroxyapatite: Preliminary observations in 45 consecutive cases of soft-disc herniation. J Neurosurg 2002;96:273–6.

    CAS  PubMed  Google Scholar 

  22. Bansal S, Chauhan V, Sharma S, Maheshwari R, Juyal A, Raghuvanshi S. Evaluation of hydroxyapatite and beta-tricalcium phosphate mixed with bone marrow aspirate as a bone graft substitute for posterolateral spinal fusion. Indian J Orthop 2009;43:234–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987;18:323–34.

    CAS  PubMed  Google Scholar 

  24. Helber MU, Ulrich C. Metaphyseal defect substitute: Hydroxylapatite ceramic. Results of a 3 to 4 year follow up. Unfallchirurg 2000;103:749–53.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai WC, Liao CJ, Wu CT, Liu CY, Lin SC, Young TH, et al. Clinical result of sintered bovine hydroxyapatite bone substitute: Analysis of the interface reaction between tissue and bone substitute. J Orthop Sci 2010;15:223–32.

    Article  CAS  PubMed  Google Scholar 

  26. Matsumine A, Myoui A, Kusuzaki K, Araki N, Seto M, Yoshikawa H, et al. Calcium hydroxyapatite ceramic implants in bone tumour surgery. A long term followup study. J Bone Joint Surg Br 2004;86:719–25.

    Article  CAS  PubMed  Google Scholar 

  27. Parikh SN. Bone graft substitutes: Past, present, future. J Postgrad Med 2002;48:142–8.

    CAS  PubMed  Google Scholar 

  28. Goto T, Kojima T, Iijima T, Yokokura S, Kawano H, Yamamoto A, et al. Resorption of synthetic porous hydroxyapatite and replacement by newly formed bone. J Orthop Sci 2001;6:444–7.

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi K, Hirano T, Yoshida G, Iwasaki K. Degradation-resistant character of synthetic hydroxyapatite blocks filled in bone defects. Biomaterials 1995;16:983–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Kumar, P., Keshav, K. et al. Hydroxyapatite crystals as a bone graft substitute in benign lytic lesions of bone. IJOO 49, 649–655 (2015). https://doi.org/10.4103/0019-5413.168767

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.168767

Key words

MeSH terms

Navigation