Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells

  • Original Article
  • Published:
Indian Journal of Orthopaedics Aims and scope Submit manuscript

This article was retracted on 09 September 2022

This article has been updated

Abstract

Background

Although progenitor cells have been observed in articular cartilage, this part has a limited ability to repair due to a lack of blood supply. Formerly, tissue engineering was mainly based on collecting chondrocytes from the joint surface, culturing them on resorbable scaffolds such as poly D, L-lactic glycolic acid (PLGA) and then autologous transplantation. In recent times, due to difficulties in collecting chondrocytes, most of the researchers are focused on stem cells for producing these cells. Among the important factors in this approach, is using appropriate scaffolds with good mechanical and biological properties to provide optimal environment for growth and development of stem cells. In this study, we evaluated the potential of fibrin glue, PLGA and alginate scaffolds in providing a suitable environment for growth and chondrogenic differentiation of mesenchymal stem cells (MSCs) in the presence of transforming growth factor-β3.

Materials and Methods

Fibrin glue, PLGA and alginate scaffolds were prepared and MSCs were isolated from human adipose tissue. Cells were cultured separately on the scaffolds and 2 weeks after differentiation, chondrogenic genes, cell proliferation ability and morphology in each scaffold were evaluated using real time-polymerase chain reaction, MTT chondrogenic assay and histological examination, respectively.

Results

Proliferation of differentiated adipose tissue derived mesenchymal stem cells (AD-MSCs) to chondrogenic cells in Fibrin glue were significantly higher than in other scaffolds. Also, Fibrin glue caused the highest expression of chondrogenic genes compared to the other scaffolds. Histological examination revealed that the pores of the Fibrin glue scaffolds were filled with cells uniformly distributed.

Conclusion

According to the results of the study, it can be concluded that natural scaffolds such as fibrin can be used as an appropriate environment for cartilage differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Khan IM, Gilbert SJ, Singhrao SK, Duance VC, Archer CW. Cartilage integration: Evaluation of the reasons for failure of integration during cartilage repair. A review. Eur Cell Mater 2008;16:26–39.

    Article  CAS  PubMed  Google Scholar 

  2. Yarlagadda PK, Chandrasekharan M, Shyan JY. Recent advances and current developments in tissue scaffolding. Biomed Mater Eng 2005;15:159–77.

    CAS  PubMed  Google Scholar 

  3. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci 2011;290602:1–19.

    Article  Google Scholar 

  4. Zhu J, Marchant RE. Design properties of hydrogel tissueengineering scaffolds. Expert Rev Med Devices 2011;8:607–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev 2009;89:957–89.

    Article  CAS  PubMed  Google Scholar 

  6. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci 2009;10:1514–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan BP, Leong KW. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur Spine J 2008;17 Suppl 4:467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moon JJ, West JL. Vascularization of engineered tissues: Approaches to promote angio-genesis in biomaterials. Curr Top Med Chem 2008;8:300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sundelacruz S, Kaplan DL. Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Semin Cell Dev Biol 2009;20:646–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. McCall JD, Luoma JE, Anseth KS. Covalently tethered transforming growth factor beta in PEG hydrogels promotes chondrogenic differentiation of encapsulated human mesenchymal stem cells. Drug Deliv Transl Res 2012;2:305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nicodemus GD, Bryant SJ. Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B Rev 2008;14:149–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma K, Titan AL, Stafford M, Zheng Ch, Levenston ME. Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels. Acta Biomater 2012;8:3754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajangam T, An SS. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int J Nanomedicine 2013;8:3641–62.

    PubMed  PubMed Central  Google Scholar 

  14. Pilia M, Guda T, Appleford M. Development of composite scaffolds for load-bearing segmental bone defects. Biomed Res Int 2013;2013:458253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lü JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 2009;9:325–41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 2005;26:4273–9.

    Article  CAS  PubMed  Google Scholar 

  17. Chen WC, Yao CL, Wei YH, Chu IM. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology 2011;63:13–23.

    Article  PubMed  CAS  Google Scholar 

  18. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004;25:3211–22.

    Article  CAS  PubMed  Google Scholar 

  19. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013;6:1285–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang W, Li B, Yang J, Xin L, Li Y, Yin H, et al. The restoration of full-thickness cartilage defects with BMSCs and TGFbeta 1 loaded PLGA/fibrin gel constructs. Biomaterials 2010;31:8964–73.

    Article  CAS  PubMed  Google Scholar 

  21. Danišovic L, Varga I, Polák S. Growth factors and chondrogenic differentiation of mesenchymal stem cells. Tissue Cell 2012;44:69–73.

    Article  PubMed  CAS  Google Scholar 

  22. http://www.ebi.ac.uk. Hinxton: The European Bioinformatics Institute, European Molecular Biology Laboratory (EMBL); c1992-2014. Available from: http://www.ebi.ac.uk/interpro/entry/IPR015618. [Last updated on 2013 Nov 27; Last cited on 2014 Jan 27].

  23. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 2007;327:449–62.

    Article  CAS  PubMed  Google Scholar 

  24. Ajibade DA, Vance DD, Hare JM, Kaplan LD, Lesniak BP. Emerging applications of stem cell and regenerative medicine to sports injuries. Orthop J Sports Med 2014;2:17.

    Article  Google Scholar 

  25. Brown PT, Handorf AM, Jeon WB, Li WJ. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des 2013;19:3429–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 2003;5:32–45.

    Article  CAS  PubMed  Google Scholar 

  27. Chen FH, Rousche KT, Tuan RS. Technology insight: Adult stem cells in cartilage regeneration and tissue engineering. Nat Clin Pract Rheumatol 2006;2:373–82.

    Article  CAS  PubMed  Google Scholar 

  28. Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 2008;10:223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kessler MW, Grande DA. Tissue engineering and cartilage. Organogenesis 2008;4:1, 28–32.

    Article  Google Scholar 

  30. Diekman BO, Guilak F. Stem cell-based therapies for osteoarthritis: Challenges and opportunities. Curr Opin Rheumatol 2013;25:119–26.

    Article  CAS  Google Scholar 

  31. Drobnic M, Kregar-Velikonja N, Radosavljevic D, Gorensek M, Koritnik B, Malicev E, et al. The outcome of autologous chondrocyte transplantation treatment of cartilage lesions in the knee. Cell Mol Biol Lett 2002;7:361–3.

    PubMed  Google Scholar 

  32. Fan H, Hu Y, Zhang C, Li X, Lv R, Qin L, et al. Cartilage regeneration using mesenchymal stem cells and a PLGAgelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 2006;27:4573–80.

    Article  CAS  PubMed  Google Scholar 

  33. Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, et al. Regeneration of articular cartilage–evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthritis Cartilage 2005;13:798–807.

    Article  CAS  PubMed  Google Scholar 

  34. Johnstone B, Alini M, Cucchiarini M, Dodge GR, Eglin D, Guilak F, et al. Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater 2013;25:248–67.

    Article  CAS  PubMed  Google Scholar 

  35. Mainil-Varlet P. A validated histological score for human cartilage biopsies in clinical trial. Presentation, 7th World Congress of the International Cartilage Repair Society, Warzaw, Poland; 2007.

    Google Scholar 

  36. Matsiko A, Levingstone TJ, O’Brien FJ. Advanced strategies for articular cartilage defect repair. Materials 2013;6:637–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCarty R, Leavesley DI, Simmons P. Application of mesenchymal stem cells for repair and regeneration of cartilage and bone. Aust Biochem 2005;36:7–10.

    Google Scholar 

  38. O’Driscoll SW, Keeley FW, Salter RB. Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A followup report at one year. J Bone Joint Surg Am 1988;70:595–606.

    Article  PubMed  Google Scholar 

  39. Parchi PD, Vittorio O, Andreani L, Piolanti N, Andreani L, Poggetti A, Lisanti M. How nanotechnology can really improve the future of orthopedic implants and scaffolds for bone and cartilage defects. J Nanomedine Biotherapeutic Discov 2013;3:114.

    Google Scholar 

  40. Qi Y, Zhao T, Xu K, Dai T, Yan W. The restoration of fullthickness cartilage defects with mesenchymal stem cells (MSCs) loaded and cross-linked bilayer collagen scaffolds on rabbit model. Mol Biol Rep 2012;39:1231–7.

    Article  CAS  PubMed  Google Scholar 

  41. Roelofs AJ, Rocke JP, De Bari C. Cell-based approaches to joint surface repair: A research perspective. Osteoarthritis Cartilage 2013;21:892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am 1993;75:532–53.

    Article  CAS  PubMed  Google Scholar 

  43. Wakitani S, Yamamoto T. Response of the donor and recipient cells in mesenchymal cell transplantation to cartilage defect. Microsc Res Tech 2002;58:14–8.

    Article  PubMed  Google Scholar 

  44. Yang P, Huang X, Wang C, Dang X, Wang K. Repair of bone defects using a new biomimetic construction fabricated by adipose-derived stem cells, collagen I, and porous betatricalcium phosphate scaffolds. Exp Biol Med (Maywood) 2013;238:1331–43.

    Article  CAS  Google Scholar 

  45. Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 2009;37:1–57.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adiposederived adult stem cells for cartilage tissue engineering. Biorheology 2004;41:389–99.

    CAS  PubMed  Google Scholar 

  47. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294–301.

    Article  CAS  PubMed  Google Scholar 

  48. Shahdadfar A, Frønsdal K, Haug T, Reinholt FP, Brinchmann JE. In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells 2005;23:1357–66.

    Article  CAS  PubMed  Google Scholar 

  49. Veronesi F, Maglio M, Tschon M, Aldini NN, Fini M. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: State-of-the-art in in vivo studies. J Biomed Mater Res A 2014;102:2448–66.

    Article  PubMed  CAS  Google Scholar 

  50. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem Funct 2008;26:664–75.

    Article  CAS  PubMed  Google Scholar 

  51. Mardani M, Hashemibeni B, Ansar MM, Zarkesh Esfahani SH, Kazemi M, Goharian V, et al. Comparison between chondrogenic markers of differentiated chondrocytes from adipose derived stem cells and articular chondrocytes in vitro. Iran J Basic Med Sci 2013;16:763–73.

    PubMed  PubMed Central  Google Scholar 

  52. Cucchiarini M, Venkatesan JK, Ekici M, Schmitt G, Madry H. Human mesenchymal stem cells overexpressing therapeutic genes: From basic science to clinical applications for articular cartilage repair. Biomed Mater Eng 2012;22:197–208.

    PubMed  Google Scholar 

  53. Portocarrero G, Collins G, Arinzeh TL. Challenges in cartilage tissue engineering. J Tissue Sci Eng 2013;4:1–2.

    Google Scholar 

  54. Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, et al. Cartilage tissue engineering: Towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 2009;4:318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwasa J, Engebretsen L, Shima Y, Ochi M. Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 2009;17:561–77.

    Article  PubMed  Google Scholar 

  56. Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, et al. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: Suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 2008;333:207–15.

    Article  PubMed  Google Scholar 

  57. Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, et al. Articular cartilage engineering with hyalograft C: 3-year clinical results. Clin Orthop Relat Res 2005;435:96–105.

    Article  Google Scholar 

  58. Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, et al. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 2012;20:1182–91.

    Article  PubMed  Google Scholar 

  59. Im GI, Jung NH, Tae SK. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: The optimal conditions of growth factors. Tissue Eng 2006;12:527–36.

    Article  CAS  PubMed  Google Scholar 

  60. Zwingmann J, Mehlhorn AT, Südkamp N, Stark B, Dauner M, Schmal H. Chondrogenic differentiation of human articular chondrocytes differs in biodegradable PGA/PLA scaffolds. Tissue Eng 2007;13:2335–43.

    Article  CAS  PubMed  Google Scholar 

  61. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010;31:4639–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules. 2011;12:1387–408.

    Article  PubMed  CAS  Google Scholar 

  63. Chung C, Erickson IE, Mauck RL, Burdick JA. Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng Part A 2008;14:1121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kreuz PC, Müller S, Ossendorf C, Kaps C, Erggelet C. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: Four-year clinical results. Arthritis Res Ther 2009;11:R33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lindahl A, Brittberg M, Peterson L. Cartilage repair with chondrocytes: Clinical and cellular aspects. Novartis Found Symp 2003;249:175–86.

    PubMed  Google Scholar 

  66. Laurienzo P. Marine polysaccharides in pharmaceutical applications: An overview. Mar Drugs 2010;8:2435–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 2011;17:281–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pei M, He F, Kish VL, Vunjak-Novakovic G. Engineering of functional cartilage tissue using stem cells from synovial lining: A preliminary study. Clin Orthop Relat Res 2008;466:1880–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lam G. Exploring the role of hypoxia related parameters in the vascularization of modular tissues. MASc Thesis. Ontario: University of Toronto; 2013.

    Google Scholar 

  70. Cheng NC, Estes BT, Young TH, Guilak F. Engineered cartilage using primary chondrocytes cultured in a porous cartilagederived matrix. Regen Med 2011;6:81–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdieh Ghiasi.

Additional information

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s43465-022-00738-w

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheykhhasan, M., Qomi, R.T., Kalhor, N. et al. RETRACTED ARTICLE: Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells. IJOO 49, 561–568 (2015). https://doi.org/10.4103/0019-5413.164043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.4103/0019-5413.164043

Key words

MeSH terms

Navigation